上述兩個問題中:(1).(2)可以看出 查看更多

 

題目列表(包括答案和解析)

如圖1:等邊可以看作由等邊繞頂點(diǎn)經(jīng)過旋轉(zhuǎn)相似變換得到.但是我們注意到圖形中的的關(guān)系,上述變換也可以理解為圖形是由繞頂點(diǎn)旋轉(zhuǎn)形成的.于是我們得到一個結(jié)論:如果兩個正三角形存在著公共頂點(diǎn),則該圖形可以看成是由一個三角形繞著該頂點(diǎn)旋轉(zhuǎn)形成的.

① 利用上述結(jié)論解決問題:如圖2,中,都是等邊三角形,求四邊形的面積;
② 圖3中, ,,仿照上述結(jié)論,推廣出符合圖3的結(jié)論.(寫出結(jié)論即可)

查看答案和解析>>

如圖1:等邊可以看作由等邊繞頂點(diǎn)經(jīng)過旋轉(zhuǎn)相似變換得到.但是我們注意到圖形中的的關(guān)系,上述變換也可以理解為圖形是由繞頂點(diǎn)旋轉(zhuǎn)形成的.于是我們得到一個結(jié)論:如果兩個正三角形存在著公共頂點(diǎn),則該圖形可以看成是由一個三角形繞著該頂點(diǎn)旋轉(zhuǎn)形成的.

① 利用上述結(jié)論解決問題:如圖2,中,都是等邊三角形,求四邊形的面積;

② 圖3中, ,仿照上述結(jié)論,推廣出符合圖3的結(jié)論.(寫出結(jié)論即可)

 

 

查看答案和解析>>

如圖1:等邊可以看作由等邊繞頂點(diǎn)經(jīng)過旋轉(zhuǎn)相似變換得到.但是我們注意到圖形中的的關(guān)系,上述變換也可以理解為圖形是由繞頂點(diǎn)旋轉(zhuǎn)形成的.于是我們得到一個結(jié)論:如果兩個正三角形存在著公共頂點(diǎn),則該圖形可以看成是由一個三角形繞著該頂點(diǎn)旋轉(zhuǎn)形成的.

① 利用上述結(jié)論解決問題:如圖2,中,都是等邊三角形,求四邊形的面積;
② 圖3中, ,,仿照上述結(jié)論,推廣出符合圖3的結(jié)論.(寫出結(jié)論即可)

查看答案和解析>>


同步練習(xí)冊答案