由.得P(.1),由 查看更多

 

題目列表(包括答案和解析)

(1)圓C:x2+y2+Dx+Ey+F=0的外部有一點(diǎn)P(x0,y0),求由點(diǎn)P向圓引切線的長(zhǎng)度;
(2)在直線2x+y+3=0上求一點(diǎn)P,使由P向圓x2+y2-4x=0引得的切線長(zhǎng)度為最。

查看答案和解析>>

(1)已知拋物線y2=2px(p>0),過焦點(diǎn)F的動(dòng)直線l交拋物線于A,B兩點(diǎn),為坐標(biāo)原點(diǎn),求證:
OA
OB
為定值;
(2)由(1)可知:過拋物線的焦點(diǎn)F的動(dòng)直線l交拋物線于A,B兩點(diǎn),存在定點(diǎn)P,使得
PA
PB
為定值.請(qǐng)寫出關(guān)于橢圓的類似結(jié)論,并給出證明.

查看答案和解析>>

(1)已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,實(shí)數(shù)a,b,c,n,p,q
滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;     (Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

(2)已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2tcosθ
y=2sinθ
(t為非零常數(shù),θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實(shí)數(shù)t,使得直線l與曲線C有兩個(gè)不同的公共點(diǎn)A、B,且
OA
OB
=10
(其中O為坐標(biāo)原點(diǎn))?若存在,請(qǐng)求出;否則,請(qǐng)說明理由.

查看答案和解析>>

(2011•重慶一模)已知橢圓E:
x2
8
+
y2
4
=1的左焦點(diǎn)為F,左準(zhǔn)線l與x軸的交點(diǎn)是圓C的圓心,圓C恰好經(jīng)過坐標(biāo)原點(diǎn)O,設(shè)G是圓C上任意一點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)若直線FG與直線l交于點(diǎn)T,且G為線段FT的中點(diǎn),求直線FG被圓C所截得的弦長(zhǎng);
(Ⅲ)在平面上是否存在一點(diǎn)P,使得
GF
GP
=
1
2
?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

(2013•成都二模)巳知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)(a>b>0)以拋物線y2=8x的焦點(diǎn)為頂點(diǎn),且離心率為
1
2

(I)求橢圓E的方程;
(II)若直線l:y=kx+m與橢圓E相交于A、B兩點(diǎn),與直線x=-4相交于Q點(diǎn),P是 橢圓E上一點(diǎn)且滿足
OP
=
OA
+
OB
(其中O為坐標(biāo)原點(diǎn)),試問在x軸上是否存在一點(diǎn)T,使得
OP
TQ
為定值?若存在,求出點(diǎn)了的坐標(biāo)及
OP
TQ
的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案