(2)令(為常數(shù)).求在區(qū)間上的最小值. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù),其中常數(shù)

(Ⅰ)當時,求函數(shù)的極值點;

(Ⅱ)令,若函數(shù)在區(qū)間上單調遞增,求的取值范圍;

(Ⅲ)設定義在D上的函數(shù)在點處的切線方程為時,若D內恒成立,則稱P為函數(shù)的“特殊點”,請你探究當時,函數(shù)是否存在“特殊點”,若存在,請最少求出一個“特殊點”的橫坐標,若不存在,說明理由.

 

 

查看答案和解析>>

(本小題滿分14分)
已知函數(shù),其中常數(shù)
(Ⅰ)當時,求函數(shù)的極值點;
(Ⅱ)令,若函數(shù)在區(qū)間上單調遞增,求的取值范圍;
(Ⅲ)設定義在D上的函數(shù)在點處的切線方程為時,若D內恒成立,則稱P為函數(shù)的“特殊點”,請你探究當時,函數(shù)是否存在“特殊點”,若存在,請最少求出一個“特殊點”的橫坐標,若不存在,說明理由.

查看答案和解析>>

一、       

二、13.;14.;15.;16.

詳細參考答案:

1.∵,∴ ,又∵ ,∴ ,選擇B

2.∵,∴ ,選擇D

3.因為陰影部分在集中又在集中,所陰影部分是,選擇A

4.∵的定義域是 ,∴,選擇C

5.∵,∴選擇A

6.由映射的定義:A、B、C不是映射,D是映射.

7.∵上是減函數(shù),∴,即

8.,或,即

9.當時,則,由當時,得,,又是奇函數(shù),,所以,即

10.∵

    ∴ ,選擇A

11.在A中,由圖像看,直線應與軸的截距;在B圖中,經過是錯誤的;在D中,經過是錯誤的,選擇C

12.根據(jù)奇函數(shù)圖像關于原點對稱,作出函數(shù)圖像,則不等式

 ,或,所以選擇D

13.∵是偶函數(shù),∴,∴的增函數(shù)區(qū)間是

14.∵,,且,∴,則

15.∵在區(qū)間上是奇函數(shù),∴,∴在區(qū)間上的最小值為

16.函數(shù)圖像如圖,方程等價于,或

17.解:∵

,,---------6分

,

,--------------8分

.-------------------12分

18.解:(1)∵,∴ 的對應法則不同,值域也不同,因此是不同的函數(shù);

   (2)∵,∴ 的定義域不同,值域也不同,因此是不同的函數(shù);

   (3)∴ 的定義域相同,對應法則相同,值域也相同,因此是同一的函數(shù).

19.解:∵,∴ ,以下分討論:------------4分

(i)                    若時,則;------------7分

(ii)                  若時,則.--------11分

綜上所述:實數(shù)的取值范圍是.-------------------12分

20.解:(1)是偶函數(shù).∵ 的定義域是,設任意,都有,∴是偶函數(shù).-----------5分

 (2)函數(shù)上是增函數(shù).設任意,且時,

,

,∴ ,,

, 即 ,-----------------11分

故函數(shù)上是增函數(shù).----------------------12分

21.解:(1)∵ ,,-----------2分

又  ---------①

 ∴    ,

  即  ---------②-----------3分

由①、② 得:,,-----------5分

(2) ,----------6分

  (i)當時,函數(shù)的最小值為;-----8分

(ii)當時,函數(shù)的最小值為;---10分

(iii)當時,函數(shù)的最小值為.------12分

22.解:(1)依題意有:,即……①,(i)當時,方程①無解,∴當時,無迭代不動點;(ii)當時,方程①有無數(shù)多解,∴當時,也無迭代不動點;(iii)當時,方程①有唯一解有迭代不動點.-------------6分

(2)設,顯然時,不滿足關系式,于是,則:

.------8分

……

即:,比較對應的系數(shù):解之:,所以.----------14分.


同步練習冊答案