16.得分評卷人 北京的高考數(shù)學(xué)試卷中共有8道選擇題.每個選擇題都給了4個選項(其中有且僅有一個選項是正確的).評分標準規(guī)定:每題只選1項.答對得5分.不答或答錯得0分.某考生每道題都給出了答案.已確定有4道題的答案是正確的.而其余的題中.有兩道題每題都可判斷其有兩個選項是錯誤的.有一道題可以判斷其有一個選項是錯誤的.還有一道題因不理解題意只能亂猜.對于這8道選擇題.試求:(Ⅰ)該考生得分為40分的概率, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項.

(1) 求函數(shù)的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項和

 

 

查看答案和解析>>

(本小題滿分13分)

已知橢圓經(jīng)過點(p,q),離心率其中p,q分別表示標準正態(tài)分布的期望值與標準差。

 (1)求橢圓C的方程;

 (2)設(shè)直線與橢圓C交于A,B兩點,點A關(guān)于x軸的對稱點為。①試建立的面積關(guān)于m的函數(shù)關(guān)系;②莆田十中高三(1)班數(shù)學(xué)興趣小組通過試驗操作初步推斷:“當(dāng)m變化時,直線與x軸交于一個定點”。你認為此推斷是否正確?若正確,請寫出定點坐標,并證明你的結(jié)論;若不正確,請說明理由。

 

查看答案和解析>>

(本小題滿分13分)

某慈善機構(gòu)舉辦一次募捐演出,有一萬人參加,每人一張門票,每張100元. 在演出過程中穿插抽獎活動.第一輪抽獎從這一萬張票根中隨機抽取10張,其持有者獲得價值1000元的獎品,并參加第二輪抽獎活動.第二輪抽獎由第一輪獲獎?wù)擢毩⒉僮靼粹o,電腦隨機產(chǎn)生兩個數(shù),,),隨即按如右所示程序框圖運行相應(yīng)程序.若電腦顯示“中獎”,則抽獎?wù)攉@得9000元獎金;若電腦顯示“謝謝”,則不中獎.

(Ⅰ)已知小曹在第一輪抽獎中被抽中,求小曹在第二輪抽獎中獲獎的概率;

(Ⅱ)若小葉參加了此次活動,求小葉參加此次活動收益的期望;

(Ⅲ)若此次募捐除獎品和獎金外,不計其它支出,該機構(gòu)想獲得96萬元的慈善款.問該慈善機構(gòu)此次募捐是否能達到預(yù)期目標.

 

查看答案和解析>>

 

(本小題滿分13分)

隨機變量X的分布列如下表如示,若數(shù)列是以為首項,以為公比的等比數(shù)列,則稱隨機變量X服從等比分布,記為Q(,).現(xiàn)隨機變量X∽Q(,2).

X

1

2

n

(Ⅰ)求n 的值并求隨機變量X的數(shù)學(xué)期望EX;

(Ⅱ)一個盒子里裝有標號為1,2,…,n且質(zhì)地相同的標簽若干張,從中任取1張標簽所得的標號為隨機變量X.現(xiàn)有放回的從中每次抽取一張,共抽取三次,求恰好2次取得標簽的標號不大于3的概率.

 

 

查看答案和解析>>

(本小題滿分13分)

橢圓與拋物線的一個交點為M,拋物線在點M處的切線過橢圓的右焦點F.

(Ⅰ)若M,求的標準方程;

(II)求橢圓離心率的取值范圍.

 

 

查看答案和解析>>

 

一、選擇題(本大題共8小題,每小題5分,共40分)

1.A    2.A    3.B    4.B    5.C    6.D    7.B    8.B

二、填空題(本大題共6小題,每小題5分,共30分)

9.-     10.5       11.2,     12.12           13.26      14.-

注:兩個空的填空題第一個空填對得2分,第二個空填對得3分.

三、解答題(本大題共6小題,共80分)

15.(本小題滿分13分)

(Ⅰ)解:f(x)=cos2x-sin2x+2sinxcosx+1=sin2x+cos2x+1

=2sin+1.  ……………………………………………5分

因此f(x)的最小正周期為,最小值為-1.……………………………7分

(Ⅱ)由f()=2得2 sin+1=2,即sin. ………9分

而由得2+.……………………………10分

故2+.…………………………………………………………12分

解得. ………………………………………………………………13分

16.(本小題滿分13分)

解:(Ⅰ)要得40分,8道選擇題必須全做對,在其余四道題中,有兩道題答對的概率為,有一道題答對的概率為,還有一道題答對的概率為,所以得40分的概率為

P=×××. ………………………………………………5分

(Ⅱ)依題意,該考生得分的取值是20,25,30,35,40,得分為20表示只做對了四道題,其余各題都做錯,故求概率為P(=20)=×××;

同樣可求得得分為25分的概率為

                                   P(=25)=××××+×××+×××;

得分為30分的概率為P(=30)=;

得分為35分的概率為,P(=35)=;

得分為40分的概率為P(=40)=

于是的分布列為

 

20

25

30

35

40

P

 

………………………………………………………………………………11分

故E=20×+25×+30×+35×+40×

該考生所得分數(shù)的數(shù)學(xué)期望為  ………………………………………13分

17.(本小題滿分14分)

解法一:

(Ⅰ)在直三棱柱ABC-A1B1C1中,CC1底面

ABC,BC1在底面上的射影為CB.

由AC=3,BC=4,AB=5,可得ACCB.

所以ACBC1………………………4分

(Ⅱ)過C作CEAB于E,連結(jié)C1E.

由CC1底面ABC可得C1EAB.

故∠CEC1為二面角C1-AB-C的平面角.

ABC中,CE=,

             在RtCC1E中,tanC1EC=

故所求二面角的大小為arctan.……9分

(Ⅲ)存在點D使AC1∥平面CDB1,且D為AB中點,下面給出證明.

設(shè)BC1與CB1交于點O,則O為BC1中點.連接OD.

在△ABC1中,D,O分別為AB,BC1的中點,故OD為△ABC1的中位線,

∴OD∥AC1,又AC1平面CDB1,OD平面CDB1

∴AC1∥平面CDB1

故存在點D為AB中點,使AC1∥平面CDB1. ………………………………14分

  解法二:

∵直三棱柱ABC-A1B1C1,底面三邊長AC=3,BC=4,AB=5,

∴AC,BC,CC1兩兩垂直.如圖以C為坐標原點,建立空間直角坐標系C-xyz,則

C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4).

(Ⅰ)∵=(-3,0,0),=(0,-4,4),

?=0,故ACBC1   ………………………………………………4分

(Ⅱ)平面ABC的一個法向量為m=(0,0,1),設(shè)平面C1AB的一個法向量為             n=(x0,y0,z0),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=(-3,0,4),=(-3,4,0).

令x0=4,則z0=3,y0=3.

則n=(4,3,3).

故cos<m,n>=

所求二面角的大小為arccos.   ………………………………………9分

(Ⅲ)同解法一   ………………………………………………………………………4分

18.(本小題滿分13分)

解:(Ⅰ)依題意有,f ′(x)=a+.……………………………………………3分

因此過(1,f(1))點的直線的斜率為a-1,又f(1)=a,

所以,過(1,f(1))點的直線方程為y-a=(a-1)(x-1).…………4分

又已知圓的圓心為(-1,0),半徑為1,依題意,=1.

解得a=1. …………………………………………………………………6分

(Ⅱ)f ′(x)=a+.

因為a>0,所以2-<2,又由已知x<2.………………………………9分

令f ′(x)>0,解得x<2-,令f ′(x)<0,解得2-<x<2. …11分

所以,f(x)的單調(diào)增區(qū)間是,

f(x)的單調(diào)減區(qū)間是.………………………………………13分

19.(本小題滿分13分)

解:(Ⅰ)由已知拋物線的焦點為(0,-),故設(shè)橢圓方程為+=1.

將點A(1,)代入方程得+=1,整理得a4-5a2+4=0,

解得a2=4或a2=1(舍).

故所求橢圓方程為+=1. …………………………………………6分

(Ⅱ)設(shè)直線BC的方程為y=x+m,設(shè)B(x1,y1),C(x2,y2),

代入橢圓方程并化簡得4x2+2mx+m2-4=0,   …………………………9分

=8m2-16(m2-4)=8(8-m2)>0,可得m2<8.

由x1+x2=-m,x1x2

又點A到BC的距離為d=, …………………………………………11分

?d=?

當(dāng)且僅當(dāng)2m2=16-2m2,即m=±2時取等號(滿足>0)

所以△ABC面積的最大值為. ………………………………………13分

20.(本小題滿分14分)

解:(Ⅰ)依題意有yn+,于是yn+1-yn

所以數(shù)列是等差數(shù)列. ………………………………………………4分

(Ⅱ)由題意得=n,即xn+xn+1=2n,(n∈N*)①

所以又有xn+2+ xn+1=2(n+1).                 ②……………………6分

由②-①得xn+2-xn=2,可知x1,x3,x5,…;x2,x4,x6,…都是等差數(shù)列.那么得

x2k-1=x1+2(k-1)=2k+a-2,

x2k=x2+2(k-1)=2-a+2(k-1)=2k-a.(k∈N*

故xn  ……………………………………………10分

(Ⅲ)當(dāng)n為奇數(shù)時,An(n+a-1,0),An+1(n+1-a,0),所以=2(1-a);

當(dāng)n為偶數(shù)時,An(n-a,0)An+1(n+a,0),所以=2a;

作BnCnx軸,垂足為Cn,則+,要使等腰三角形AnBnAn+1為直角三角形,必須且只需=2.

當(dāng)n為奇數(shù)時,有2(1-a)=2,即12a=11-3n.     ①

當(dāng)n=1時,a=;當(dāng)n=3時,a=;當(dāng)n≥5時,①式無解.

當(dāng)n為偶數(shù)時,有12a=3n+1,同理可求得a=

綜上所述,上述等腰三角形AnBnAn+1中存在直角三角形,此時a的值為.  ………………………………………………………………………14分

 


同步練習(xí)冊答案