(1) 證明:, 查看更多

 

題目列表(包括答案和解析)

證明:;

查看答案和解析>>

證明:(1)
n
k=0
2k
C
k
n
=3n
(n∈N);
(2)2C2n0+C2n1+2C2n2+C2n3+…+C2n2n-1+2C2n2n=3•22n-1(n∈N);
(3)2<(1+
1
n
)n<3(n∈N)

查看答案和解析>>

證明:
(1)
tanα-tanβ
tanα+tanβ
=
sin(α-β)
sin(α+β)
;
(2)tan3α-tan2α-tanα=tan3αtan2αtanα.

查看答案和解析>>

證明:如果存在不全為0的實(shí)數(shù)s,t,使s
a
+t
b
=
0
,,那么
a
與 
b
 是共線向量;如果
a
與 
b
 不共線,且s
a
+t
b
=
0
,,那么s=t=0.

查看答案和解析>>

17.證明:假設(shè)f(x)至少有兩個(gè)零點(diǎn)。不妨設(shè)有兩個(gè)零點(diǎn),則f()=0,f()=0

所以f()=f()與已知f(x)是單調(diào)函數(shù)矛盾,所以假設(shè)錯(cuò)誤,因此f(x)在其定義域上是單調(diào)函數(shù)證明f(x)至多有一個(gè)零點(diǎn)

一批產(chǎn)品共10件,其中7件正品,3件次品,每次從這批產(chǎn)品中任取一件,在下述三種情況下,分別求直至取得正品時(shí)所需次數(shù)X的概率分布。

(1)每次取出的產(chǎn)品不再放回去;    

(2)每次取出的產(chǎn)品仍放回去;

(3)每次取出一件次品后,總是另取一件正品放回到這批產(chǎn)品中.

查看答案和解析>>

一、選擇題 CAADD    ABDAB   CB

二、填空題               

三、解答題

     

               

               

               

       的周期為,最大值為

       ,

          得

         ∴的單調(diào)減區(qū)間為

事件,表示甲以獲勝;表示乙以獲勝,、互斥,

    ∴

  

事件,表示甲以獲勝;表示甲以獲勝, 、互斥,

   延長(zhǎng)、交于,則

      連結(jié),并延長(zhǎng)交延長(zhǎng)線于,則,,

      在中,為中位線,,

      又

       ∴

      中,,

,又,

,∴,

為平面與平面所成二面角的平面角。

,

∴所求二面角大小為

,

    知,,同理,

    又

構(gòu)成以為首項(xiàng),以為公比的等比數(shù)列。

,即

     

     

     

     

,且的圖象經(jīng)過(guò)點(diǎn),

     ∴的兩根.

     ∴

   ∴

要使對(duì),不等式恒成立,

只需即可.

,

上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.

,,

,

,

解得,即為的取值范圍.

由題意知,橢圓的焦點(diǎn),,頂點(diǎn),

     ∴雙曲線,

     ∴的方程為:

聯(lián)立,得,

,

設(shè),

,

,即,

,

,

由①②得的范圍為

 

 

 

 


同步練習(xí)冊(cè)答案