8.已知的交點(diǎn)中.距離最近的兩點(diǎn)間的距離為.那么此函數(shù)的最小正周期是 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=2sin(ωx+φ)(ω>0)的圖象與直線y=1的交點(diǎn)中距離最近的兩點(diǎn)間距離為
π3
,那么ω等于
 

查看答案和解析>>

已知雙曲線的中心在原點(diǎn),以兩條坐標(biāo)軸為對稱軸,離心率是
2
,兩準(zhǔn)線間的距離大于
2
,且雙曲線上動(dòng)點(diǎn)P到A(2,0)的最近距離為1.
(Ⅰ)求證:該雙曲線的焦點(diǎn)不在y軸上;
(Ⅱ)求雙曲線的方程;
(Ⅲ)如果斜率為k的直線L過點(diǎn)M(0,3),與該雙曲線交于A、B兩點(diǎn),若
AM
MB
(λ>0)
,試用l表示k2,并求當(dāng)λ∈[
1
2
,2]
時(shí),k的取值范圍.

查看答案和解析>>

已知y=sin(ωx+?)與直線y=
1
2
的交點(diǎn)中,距離最近的兩點(diǎn)間的距離為
π
3
,那么此函數(shù)的最小正周期是( 。

查看答案和解析>>

已知函數(shù))為奇函數(shù),其圖象與軸的所有交點(diǎn)中最近的兩交點(diǎn)間的距離為,則的一個(gè)單調(diào)遞增區(qū)間為   (    )

A.        B.           C.        D.

 

查看答案和解析>>

已知函數(shù)f(x)=2sin(ωx+φ)(ω>0)的圖象與直線y=1的交點(diǎn)中距離最近的兩點(diǎn)間距離為
π
3
,那么ω等于 ______.

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空題:本大題共4個(gè)小題,每小題4分,共16分。

13.   14.    15.1:2    16.①②⑤  

20090203

17.(本小題滿分12分)

    解:(I)共線

   

     ………………3分

    故 …………6分

   (II)

   

      …………12分

18.(本小題滿分12分)

解:根據(jù)題意得圖02,其中BC=31千米,BD=20千米,CD=21千米,

∠CAB=60˚.設(shè)∠ACD = α ,∠CDB = β .

,

.……9分

在△ACD中,由正弦定理得:

19.(本小題滿分12分)

解:(1)連結(jié)OP,∵Q為切點(diǎn),PQOQ,

由勾股定理有,

又由已知

即: 

化簡得 …………3分

   (2)由,得

…………6分

故當(dāng)時(shí),線段PQ長取最小值 …………7分

   (3)設(shè)⊙P的半徑為R,∵⊙P與⊙O有公共點(diǎn),⊙O的半徑為1,

即R且R

故當(dāng)時(shí),,此時(shí)b=―2a+3=

得半徑最最小值時(shí)⊙P的方程為…………12分

20.(本小題滿分12分)

解:(I)取PD的中點(diǎn)G,連結(jié)FG、AG,則

<dfn id="n2qmb"><p id="n2qmb"><abbr id="n2qmb"></abbr></p></dfn>
    <samp id="n2qmb"><optgroup id="n2qmb"></optgroup></samp>

    又E為AB的中點(diǎn)

    ∴四邊形AEFG為平行四邊形  …………3分

    ∴EF∥AG

    又AG平面PAD

    ∴EF∥平面PAD …………5分

       (II)∵PA⊥平面ABCD

    ∴PA⊥AE

    又矩形ABCD中AE⊥AD

    ∴AE⊥平面PAD

    ∴AE⊥AG

    ∴AE⊥EF

    又AE//CD

    ∴ED⊥CD  …………8分

    又∵PA=AD

    ∴在Rt△PAE和Rt△CBE中PE=CE

    ∵D為PC的中點(diǎn)

    ∴EF⊥PC …………10分

    又PC∩CD=C

    ∴EF⊥平面PCD

    又EF平面PEC

    ∴平面PEC⊥平面PCD  …………12分

     

     

    22.(本小題滿分12分)

    解:(I)

    單調(diào)遞增。 …………2分

    ,不等式無解;

    ;

    ;

    所以  …………6分

       (II), …………8分

                             ……………11分

    因?yàn)閷σ磺?sub>……12分

    22.(本小題滿分14分)

    解:(I)

       (II)…………7分

       (III)令上是增函數(shù)

     

     

     


    同步練習(xí)冊答案