直線與圓相交于.兩點(diǎn).若在圓O上存在點(diǎn). 查看更多

 

題目列表(包括答案和解析)

若直線y=kx+1與圓x2+y2=1相交于PQ兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),則k的值為(  )

A.         B.               C.±1                     D.不存在

查看答案和解析>>

若直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),則k的值為(  )
A.B.C.±1D.不存在

查看答案和解析>>

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為
2
2
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過(guò)原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知圓O:x2+y2=
4
9
,直線l:y=kx+m與橢圓C:
x2
2
+y2=1
相交于P、Q兩點(diǎn),O為原點(diǎn).
(Ⅰ)若直線l過(guò)橢圓C的左焦點(diǎn),且與圓O交于A、B兩點(diǎn),且∠AOB=60°,求直線l的方程;
(Ⅱ)如圖,若△POQ重心恰好在圓上,求m的取值范圍.

查看答案和解析>>

已知圓O:軸于A,B兩點(diǎn),曲線C是以為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連結(jié)PF,過(guò)原點(diǎn)O作直線PF的垂線交直線X=-2于點(diǎn)Q.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓相切;

(Ⅲ)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與AB重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

1.C  2.D  3.A  4.A  5.C  6.D  7.D  8.A 9.C10.D   11.B12.D

13.

14.

15.

16.  

17

18.解:

 ⑴ .

⑵ 函數(shù)上單調(diào)遞增,

上單調(diào)遞減.

所以,當(dāng)時(shí),;當(dāng)時(shí),.

的值域?yàn)?sub>.

19.解:由題意可知圓的方程為,于是.

時(shí),設(shè),,則由得,

. 所以的中點(diǎn)坐標(biāo)為.

又由,且,可知直線與直線垂直,即直線的斜率為.

此時(shí)直線的方程為,即.

時(shí),同理可得直線的方程為.

故直線的方程為.

20. 解:(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得

a=3 ,  b=-2, 所以  f(x)=3x2-2x.

又因?yàn)辄c(diǎn)均在函數(shù)的圖像上,所以=3n2-2n.

當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-

=6n-5.

當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5 (

(Ⅱ)由(Ⅰ)

得知

故Tn

(1-

因此,要使(1-)<)成立的m,必須且僅須滿足,即m≥10,所以滿足要求的最小正整數(shù)m為10.

21.解:⑴設(shè),∵不等式的解集為

……… ①       ……… ②

又∵有兩等根,

……… ③     由①②③解得   …………(5分)

又∵,

,故.

  …………………………(7分)

⑵由①②得

,

……………………(9分)

無(wú)極值,∴方程

       ,

解得  …………(12分)

22.(1);

   (2)

   (3)

 

 

 


同步練習(xí)冊(cè)答案