(3)求數(shù)的前n項(xiàng)和S. 查看更多

 

題目列表(包括答案和解析)

數(shù)列{an}的前n項(xiàng)和記為Sn,前kn項(xiàng)和記為Skn(n,k∈N*),對(duì)給定的常數(shù)k,若
S(k+1)n
Skn
是與n無(wú)關(guān)的非零常數(shù)t=f(k),則稱(chēng)該數(shù)列{an}是“k類(lèi)和科比數(shù)列”.
(理科)(1)已知Sn=(
an+1
2
)2an>0
,求數(shù)列{an}的通項(xiàng)公式;
(2)證明(1)的數(shù)列{an}是一個(gè)“k類(lèi)和科比數(shù)列”;
(3)設(shè)正數(shù)列{cn}是一個(gè)等比數(shù)列,首項(xiàng)c1,公比Q(Q≠1),若數(shù)列{lgcn}是一個(gè)“k類(lèi)和科比數(shù)列”,探究c1與Q的關(guān)系.

查看答案和解析>>

數(shù)列{an}的前n項(xiàng)和記為Sn,前kn項(xiàng)和記為Skn(n,k∈N*),對(duì)給定的常數(shù)k,若
S(k+1)n
Skn
是與n無(wú)關(guān)的非零常數(shù)t=f(k),則稱(chēng)該數(shù)列{an}是“k類(lèi)和科比數(shù)列”.
(1)已知Sn=
4
3
an-
2
3
(n∈N*)
,求數(shù)列{an}的通項(xiàng)公式;
(2)在(1)的條件下,數(shù)列an=2cn,求證數(shù)列cn是一個(gè)“1 類(lèi)和科比數(shù)列”(4分);
(3)設(shè)等差數(shù)列{bn}是一個(gè)“k類(lèi)和科比數(shù)列”,其中首項(xiàng)b1,公差D,探究b1與D的數(shù)量關(guān)系,并寫(xiě)出相應(yīng)的常數(shù)t=f(k).

查看答案和解析>>

數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1-an-1=0,數(shù)列{bn}滿(mǎn)足b1=2,anbn+1=2an+1bn.

(1)求S;

(2)求bn.

查看答案和解析>>

數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1-an-1=0,數(shù)列{bn}滿(mǎn)足b1=2,anbn+1=2an+1bn.
(1)求S
(2)求bn.

查看答案和解析>>

等差數(shù)列{}的前n項(xiàng)和記為Sn.已知

(Ⅰ)求通項(xiàng);w.w.w.k.s.5.u.c.o.m    

(Ⅱ)若Sn=242,求n.

查看答案和解析>>

三、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

B

B

D

B

D

A

B

C

B

四、填空題

13.2      14. 31    15.     16.  2.

三、解答題

17.解:(Ⅰ)

的最小正周期

(Ⅱ)由解得

的單調(diào)遞增區(qū)間為。

18.(I)解:記這兩套試驗(yàn)方案在一次試驗(yàn)中均不成功的事件為A,則至少有一套試驗(yàn)成功的事件為    由題意,這兩套試驗(yàn)方案在一次試驗(yàn)中不成功的概率均為1-p.

所以,,    從而,

   (II)解:ξ的可取值為0,1,2.

 

所以ξ的分布列為

ξ

0

1

2

P

0.49

0.42

0.09

ξ的數(shù)學(xué)期望 

19.(Ⅰ)取DC的中點(diǎn)E.

∵ABCD是邊長(zhǎng)為的菱形,,∴BE⊥CD.

平面, BE平面,∴ BE.

∴BE⊥平面PDC.∠BPE為求直線(xiàn)PB與平面PDC所成的角. 

∵BE=,PE=,∴==.  

(Ⅱ)連接AC、BD交于點(diǎn)O,因?yàn)锳BCD是菱形,所以AO⊥BD.

平面, AO平面,

PD. ∴AO⊥平面PDB.

作OF⊥PB于F,連接AF,則AF⊥PB.

故∠AFO就是二面角A-PB-D的平面角.

∵AO=,OF=,∴=.

20.解: (Ⅰ)恒成立,

所以,.

恒成立,

所以 ,

從而有.

,.

 (Ⅱ)令,

    則

所以上是減函數(shù),在上是增函數(shù),

從而當(dāng)時(shí),.

所以方程只有一個(gè)解.

21.證明:由是關(guān)于x的方程的兩根得

,

是等差數(shù)列。

(2)由(1)知

。

。

符合上式, 。

(3)

  ②

①―②得

。

22.解:(1)由題意

   (2)由(1)知:(x>0)

h(x)=px2-2x+p.要使g(x)在(0,+∞)為增函數(shù),只需h(x)在(0,+∞)滿(mǎn)足:h(x)≥0恒成立。即px2-2x+p≥0。

上恒成立

所以

   (3)證明:①即證 lnxx+1≤0  (x>0),

設(shè).

當(dāng)x∈(0,1)時(shí),k′(x)>0,∴k(x)為單調(diào)遞增函數(shù);

當(dāng)x∈(1,∞)時(shí),k′(x)<0,∴k(x)為單調(diào)遞減函數(shù);

x=1為k(x)的極大值點(diǎn),

∴k(x)≤k(1)=0.

即lnxx+1≤0,∴l(xiāng)nxx-1.

②由①知lnxx-1,又x>0,

 

 


同步練習(xí)冊(cè)答案