(Ⅰ)求函數(shù)的最小正周期, 查看更多

 

題目列表(包括答案和解析)

(14分)設(shè)函數(shù)

   (Ⅰ)求函數(shù)的最小正周期;

   (Ⅱ)若,是否存在實(shí)數(shù)m,使函數(shù)的值域恰為?若存在,請(qǐng)求

    出m的取值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)函數(shù)

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)求函數(shù)的增區(qū)間

(Ⅲ)當(dāng)時(shí),求函數(shù)的最大最小值并求出相應(yīng)的的值

查看答案和解析>>

函數(shù)的最小正周期為,

(Ⅰ)求的單調(diào)遞增區(qū)間; 

(Ⅱ)在中,角A,B,C的對(duì)邊分別是,且滿足,

求角B的值,并求函數(shù)的取值范圍.

查看答案和解析>>

已知函數(shù).

(Ⅰ)求函數(shù)的最小正周期;w.w.w.k.s.5.u.c.o.m    

(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值和最小值.

查看答案和解析>>

已知函數(shù)

   (Ⅰ)求函數(shù)的最小正周期;

   (Ⅱ)求使函數(shù)取得最大值的x的集合.

查看答案和解析>>

三、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

B

B

D

B

D

A

B

C

B

四、填空題

13.2     14. 31    15.     16.  2.

三、解答題

17.17.解:(Ⅰ)

的最小正周期

(Ⅱ)由解得

的單調(diào)遞增區(qū)間為。

18.(Ⅰ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球均為紅球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為紅球”為事件.由于事件相互獨(dú)立,且

,,

故取出的4個(gè)球均為紅球的概率是

(Ⅱ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)紅球?yàn)楹谇颉睘槭录?sub>,“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件.由于事件互斥,且

故取出的4個(gè)紅球中恰有4個(gè)紅球的概率為

19.(Ⅰ)取DC的中點(diǎn)E.

∵ABCD是邊長(zhǎng)為的菱形,,∴BE⊥CD.

平面, BE平面,∴ BE.

∴BE⊥平面PDC.∠BPE為求直線PB與平面PDC所成的角. 

∵BE=,PE=,∴==.  

(Ⅱ)連接AC、BD交于點(diǎn)O,因?yàn)锳BCD是菱形,所以AO⊥BD.

平面, AO平面,

PD. ∴AO⊥平面PDB.

作OF⊥PB于F,連接AF,則AF⊥PB.

故∠AFO就是二面角A-PB-D的平面角.

∵AO=,OF=,∴=.

20.解:(1)令得所求增區(qū)間為,。

(2)要使當(dāng)時(shí)恒成立,只要當(dāng)時(shí) 。

由(1)知

當(dāng)時(shí),是增函數(shù),

當(dāng)時(shí),是減函數(shù),;

當(dāng)時(shí),是增函數(shù),

,因此。

21. 證明:由是關(guān)于x的方程的兩根得

。

,

是等差數(shù)列。

(2)由(1)知

。

。

符合上式, 。

(3)

  ②

①―②得 。

。

22. (1)∵

 

,∴

,

在點(diǎn)附近,當(dāng)時(shí),;當(dāng)時(shí),

是函數(shù)的極小值點(diǎn),極小值為

在點(diǎn)附近,當(dāng)時(shí),;當(dāng)時(shí),

是函數(shù)的極大值點(diǎn),極大值為

,易知,

是函數(shù)的極大值點(diǎn),極大值為;

是函數(shù)的極小值點(diǎn),極小值為

(2)若在上至少存在一點(diǎn)使得成立,

上至少存在一解,即上至少存在一解

由(1)知,

當(dāng)時(shí),函數(shù)在區(qū)間上遞增,且極小值為

∴此時(shí)上至少存在一解; 

當(dāng)時(shí),函數(shù)在區(qū)間上遞增,在上遞減,

∴要滿足條件應(yīng)有函數(shù)的極大值,即

綜上,實(shí)數(shù)的取值范圍為。

 

 


同步練習(xí)冊(cè)答案