12. 在的展開(kāi)式中.x7的系數(shù)是15.則實(shí)數(shù)a = . 查看更多

 

題目列表(包括答案和解析)

在(x-a)10的展開(kāi)式中,x7的系數(shù)是15,則實(shí)數(shù)a=________.

查看答案和解析>>

在(x-a)10的展開(kāi)式中,x7的系數(shù)是15,則實(shí)數(shù)a=________.

查看答案和解析>>

在(x-a)10的展開(kāi)式中,x7的系數(shù)是15,則實(shí)數(shù)a=________.

查看答案和解析>>

在(x-a)10的展開(kāi)式中,x7的系數(shù)是15,則實(shí)數(shù)a=________.

查看答案和解析>>

在(x-a)10的展開(kāi)式中,x7的系數(shù)是15,則實(shí)數(shù)a=
 

查看答案和解析>>

2009年4月

一、選擇題:本大題共10小題,每題5分,共50分.

1.B    2.A    3.C    4.C    5.B    6.A    7.C    8.A    9.B   10.B

二、填空題:本大題共5小題,每題5分,共25分.

11.4                                      12.                                  13.

14.                                  15.①

三、解答題:本題共6小題,共75分.

16.解:(1)  

 

(2)  

       

 

 

 

17.解:(1) 甲隊(duì)以二比一獲勝,即前兩場(chǎng)中甲勝1場(chǎng),第三場(chǎng)甲獲勝,其概率為

(2) 乙隊(duì)以2∶0獲勝的概率為;

乙隊(duì)以2∶1獲勝的概率為

∴乙隊(duì)獲勝的概率為P2=P'2+''2=0.16+0.192=0.352.

18.解:(1) ∵  函數(shù)是定義在R上的奇函數(shù),

∵       ∴ 

處的切線方程為,

∴  ,且, ∴ 

(2)

依題意對(duì)任意恒成立,   

對(duì)任意恒成立,即對(duì)任意恒成立,

19.解法一:(1) 證明:取中點(diǎn)為,連結(jié)、,

               ∵△是等邊三角形, ∴

               又∵側(cè)面底面,

               ∴底面,

               ∴在底面上的射影,

               又∵,

               ,

               ∴,  ∴,

                ∴,      ∴

(2) 取中點(diǎn),連結(jié)、,    

    ∵.    ∴

又∵,,

平面,∴

是二面角的平面角.                  

,

,∴,∴

∴二面角的大小為                       

解法二:證明:(1) 取中點(diǎn)為,中點(diǎn)為,連結(jié),

∵△是等邊三角形,∴,

又∵側(cè)面底面,∴底面,

∴以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系

如圖,   

,△是等邊三角形,

,

     ∴

(2) 設(shè)平面的法向量為

   ∴

,則,∴               

設(shè)平面的法向量為,              

,∴,

,則,∴       

,   ∴二面角的大小為.        

20.解:(1) 由題意得,  ①, 

當(dāng)時(shí),,解得

當(dāng)時(shí),有  ②,

①式減去②式得,

于是,,,

因?yàn)?sub>,所以

所以數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,

所以的通項(xiàng)公式為).

(2) 設(shè)存在滿足條件的正整數(shù),則,,

,,…,,,…,,

所以,,…,均滿足條件,

它們組成首項(xiàng)為,公差為的等差數(shù)列.……(8分)

設(shè)共有個(gè)滿足條件的正整數(shù),則,解得.(10分)

所以,中滿足條件的正整數(shù)存在,共有個(gè),的最小值為.(12分)

21.(Ⅰ)法1:依題意,顯然的斜率存在,可設(shè)直線的方程為

,

整理得 . ①

設(shè)是方程①的兩個(gè)不同的根,

,   ②

,由是線段的中點(diǎn),得

,∴

解得,代入②得,的取值范圍是(12,+∞).

于是,直線的方程為,即   

法2:設(shè),,則有

 

依題意,,∴

的中點(diǎn),∴,,從而

又由在橢圓內(nèi),∴,

的取值范圍是.    

直線的方程為,即.   

(2)  ∵垂直平分,∴直線的方程為,即,

代入橢圓方程,整理得.  ③      

又設(shè),的中點(diǎn)為,則是方程③的兩根,

到直線的距離,

故所求的以線段的中點(diǎn)為圓心且與直線相切的圓的方程為:

 


同步練習(xí)冊(cè)答案