已知點P在曲線C:上.曲線C在點P處的切線與函數(shù)的圖象交于點A.與x軸交于點B.設(shè)點P的橫坐標(biāo)為t.點A.B的橫坐標(biāo)分別為xA.xB.記. 查看更多

 

題目列表(包括答案和解析)

已知點P在曲線C:上,曲線C在點P處的切線與函數(shù)y=kx(k>0)的圖象交于點A,與x軸交于點B,設(shè)點P的橫坐標(biāo)為t,點A、B的橫坐標(biāo)分別為xA、xB,記f(t)=xA•xB
(1)求f(t)的解析式;
(2)設(shè)數(shù)列{an}滿足,求數(shù)列{an}的通項公式;
(3)在 (2)的條件下,當(dāng)1<k<3時,證明不等式

查看答案和解析>>

已知點P在曲線C:數(shù)學(xué)公式上,曲線C在點P處的切線與函數(shù)y=kx(k>0)的圖象交于點A,與x軸交于點B,設(shè)點P的橫坐標(biāo)為t,點A、B的橫坐標(biāo)分別為xA、xB,記f(t)=xA•xB
(1)求f(t)的解析式;
(2)設(shè)數(shù)列{an}滿足數(shù)學(xué)公式,求數(shù)列{an}的通項公式;
(3)在 (2)的條件下,當(dāng)1<k<3時,證明不等式數(shù)學(xué)公式

查看答案和解析>>

已知點P在曲線C:y=
1
x
(x>1)上,設(shè)曲線C在點P處的切線為l,若l與函數(shù)y=kx(k>0)的圖象的交點為A,與x軸的交點為B,設(shè)點P的橫坐標(biāo)為t,A、B的橫坐標(biāo)分別為xA、xB,記f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=1,an=f(
an-1
)
(n≥2),數(shù)列{bn}滿足bn=
1
an
-
k
3
,求an與bn;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)1<k<3時,證明不等式:a1+a2+…+an
3n-8k
k

查看答案和解析>>

已知點P在曲線C:y=
1
x
 (x>1)
上,曲線C在點P處的切線與函數(shù)y=kx(k>0)的圖象交于點A,與x軸交于點B,設(shè)點P的橫坐標(biāo)為t,點A、B的橫坐標(biāo)分別為xA、xB,記f(t)=xA•xB
(1)求f(t)的解析式;
(2)設(shè)數(shù)列{an}滿足a1=1,an=f(
an-1
) (n≥2 且 x∈N*)
,求數(shù)列{an}的通項公式;
(3)在 (2)的條件下,當(dāng)1<k<3時,證明不等式a1+a2+…+an
3n-8k
k

查看答案和解析>>

已知點P在曲線C:y=(x>1)上,設(shè)曲線C在點P處的切線為l,若l與函數(shù)y=kx(k>0)的圖象的交點為A,與x軸的交點為B,設(shè)點P的橫坐標(biāo)為t,A、B的橫坐標(biāo)分別為xA、xB,記f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=1,an=(n≥2),數(shù)列{bn}滿足bn=,求an與bn;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)1<k<3時,證明不等式:a1+a2+…+an

查看答案和解析>>

2009年4月

一、選擇題:本大題共10小題,每題5分,共50分.

1.A    2.D    3.B    4.A    5.D    6.C    7.D    8.B    9.B    10.C

二、填空題:本大題共5小題,每題5分,共25分.

11.                                    12.                                  13.

14.                                  15.①②⑤

三、解答題:本題共6小題,共75分.

16.解:(1) ??????????????????????????????????????? 3分

??????????????????????????????????????????????????????????????????????????? 5分

(2) ????????????????????????????????????????????????????? 8分

????????????????????????????????????????????????????????????????? 9分

???????????????????????????????????????????????????????????????????? 10分

?????????????????????????????????????????????????????????????????????????? 11分

?????????????? 13分

17.解:(1) 有兩道題答對的概率為,有一道題答對的概率為??????????????????????????? 2分

????????????????????????????????????????????????????????? 5分

(2) ?????????????????????????????????????????????????????? 7分

?????????????????????????????? 9分

??????????????????????????????? 11分

的分布列為

35

40

45

50

P

???????????????????????????????????? 13分

18.(1) 證明:取CE中點M,則 FMDE

∵ ABDE       ∴ ABFM

∴ ABMF為平行四邊形

∴ AF∥BM

又AF平面BCE,BM平面BCE

∴ AF∥平面BCE??????????????????????????????????????????????????????????????????? 4分

(2) 解:過C作l∥AB,則l∥DE     ∴ 平面ABC平面CDE = l

∵ AB⊥平面ACD      ∴ l⊥平面ACD

∴ ∠ACD即為所求二面角的平面角,為60?????????????????????????????????? 8分

(3) 解:設(shè)B在平面AFE內(nèi)的射影為,作MN⊥FE于N,作CG⊥EF于G.

∴ BE與平面AFE所成角為

∵ AF⊥CD,AF⊥DE   ∴ AF⊥平面CDE    ∴ AF⊥MN ∴ MN⊥平面AEF

∵ BM∥平面AEF       ∴

由△CGF∽△EDF,得    ∴

    ∴

???????????????????????????????????????????????????????????????? 13分

19.解:(1) ?????????????????????????????????????????????????????????????????????????? 2分

       由

上單調(diào)遞減,在上單調(diào)遞增????????????????????????? 5分

(2) ?????????????????????????????????????????? 6分

上遞減     ∴ ??????????????? 9分

設(shè)    ∵    ∴上遞減

 即

???????????????????????????????????????????????????????????????????????? 12分

20.解:(1)  B(0,? b),A(,0),F(xiàn)(c,0),P(c,

      ∴ D為線段FP的中點,

∴ D為(c,)??????????????????????????????????????????????????????????????????? 2分

,∴ a = 2b,

?????????????????????????????????????????????? 5分

(2)  a = 2,則b = 1,B(0,?1)     雙曲線的方程為   ①

設(shè)M(x1,y1),N(x2,y2),C(0,m)

由已知???????????????????????????? 7分

設(shè)

整理得:

對滿足的k恒成立

故存在y軸上的點C(0,4),使為常數(shù)17.????????????????????? 12分

21.解:(1) ???????????????????????????????????????????????????????????????????????????? 1分

切線方程為與y = kx聯(lián)立得:

,令y = 0得:xB = 2t????????????????????????????????????????????????? 3分

??????????????????????????????????????????????????????? 4分

(2) 由??????????????????????????????????????????????????? 5分

兩邊取倒數(shù)得:      ∴

是以為首項,為公比的等比數(shù)列(時)

或是各項為0的常數(shù)列(k = 3時),此時an = 1

??????????????????????????????? 7分

當(dāng)k = 3時也符合上式

????????????????????????????????????????????????????????????????? 8分

(3) 作差得

其中

由于 1 < k < 3,∴

當(dāng)?????????????????????????????????????????????????? 12分

 

 


同步練習(xí)冊答案