即f()≤+2. 又f()=f(1)=3≤2+, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=為常數(shù)。

(I)當=1時,求f(x)的單調(diào)區(qū)間;

(II)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),求的取值范圍。

【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問中,利用當a=1時,f(x)=,則f(x)的定義域是然后求導,,得到由,得0<x<1;由,得x>1;得到單調(diào)區(qū)間。第二問函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),則在區(qū)間[1,2]上恒成立,即即,或在區(qū)間[1,2]上恒成立,解得a的范圍。

(1)當a=1時,f(x)=,則f(x)的定義域是

。

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函數(shù),在(1,上是減函數(shù)。……………6分

(2)。若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),

在區(qū)間[1,2]上恒成立!,或在區(qū)間[1,2]上恒成立。即,或在區(qū)間[1,2]上恒成立。

又h(x)=在區(qū)間[1,2]上是增函數(shù)。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或。

 

查看答案和解析>>

已知函數(shù)y=f(x)是定義域為R的偶函數(shù),且對x∈R,恒有f(1+x)=f(1-x).又當x∈[0,1]時,f(x)=x.
(1)當x∈[-1,0]時,求f(x)的解析式;
(2)求證:函數(shù)y=f(x)(x∈R)是以T=2為周期的周期函數(shù);
(3)解答本小題考生只需從下列三個問題中選擇一個寫出結(jié)論即可(無需寫解題步驟).注意:考生若選擇多于一個問題解答,則按分數(shù)最低一個問題的解答正確與否給分.
①當x∈[2n-1,2n](n∈Z)時,求f(x)的解析式.
②當x∈[2n-1,2n+1](其中n是給定的正整數(shù))時,若函數(shù)y=f(x)的圖象與函數(shù)y=kx的圖象有且僅有兩個公共點,求實數(shù)k的取值范圍.
③當x∈[0,2n](n是給定的正整數(shù)且n≥3)時,求f(x)的解析式.

查看答案和解析>>

判斷下列函數(shù)的奇偶性:
(Ⅰ)f(x)=x5+5x;
奇函數(shù)
奇函數(shù)

(Ⅱ)f(x)=x4+2x2-1;
偶函數(shù)
偶函數(shù)

(Ⅲ)y=
x2-1
+
1-x2
;
即是奇函數(shù)又是偶函數(shù)
即是奇函數(shù)又是偶函數(shù)

(Ⅳ)f(x)=2x2-1,x∈[-2,3].
非奇非偶函數(shù)
非奇非偶函數(shù)

查看答案和解析>>

(2012•黃浦區(qū)二模)已知函數(shù)y=f(x)是定義域為R的偶函數(shù),且對x∈R,恒有f(1+x)=f(1-x).又當x∈[0,1]時,f(x)=x.
(1)當x∈[-1,0]時,求f(x)的解析式;
(2)求證:函數(shù)y=f(x)(x∈R)是以T=2為周期的周期函數(shù);
(3)解答本小題考生只需從下列三個問題中選擇一個寫出結(jié)論即可(無需寫解題步驟).注意:考生若選擇多于一個問題解答,則按分數(shù)最低一個問題的解答正確與否給分.
①當x∈[2n-1,2n](n∈Z)時,求f(x)的解析式.
②當x∈[2n-1,2n+1](其中n是給定的正整數(shù))時,若函數(shù)y=f(x)的圖象與函數(shù)y=kx的圖象有且僅有兩個公共點,求實數(shù)k的取值范圍.
③當x∈[0,2n](n是給定的正整數(shù)且n≥3)時,求f(x)的解析式.

查看答案和解析>>

若x∈R,n∈N*,規(guī)定:=x(x+1)(x+2)……(x+n-1),例如:=(-3)·(-2)·(-1)=-6,則函數(shù)f(x)=x·

[  ]

A.是奇函數(shù)不是偶函數(shù)

B.即是奇函數(shù)又是偶函數(shù)

C.是偶函數(shù)不是奇函數(shù)

D.即不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>


同步練習冊答案