分析:(I)先判斷f(x)=x
5+5x的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),再判斷f(-x)與f(x)的關(guān)系,根據(jù)奇函數(shù)的定義可得結(jié)論;
(II)先判斷f(x)=x
4+2x
2-1的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),再判斷f(-x)與f(x)的關(guān)系,根據(jù)偶函數(shù)的定義可得結(jié)論;
(III)先判斷y=
+的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),再判斷f(-x)與f(x)的關(guān)系,根據(jù)奇函數(shù)和偶函數(shù)的定義可得結(jié)論;
(IV)根據(jù)f(x)=2x
2-1,x∈[-2,3]的定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),可得結(jié)論;
解答:解:(Ⅰ)f(x)=x
5+5x的定義域R關(guān)于原點(diǎn)對(duì)稱(chēng)
且f(x)=-x
5-5x=-f(x)
故f(x)=x
5+5x為奇函數(shù)
(Ⅱ)f(x)=x
4+2x
2-1的定義域R關(guān)于原點(diǎn)對(duì)稱(chēng);
且f(-x)=x
4+2x
2-1=f(x)
故函數(shù)f(x)=x
4+2x
2-1為偶函數(shù)
(Ⅲ)y=
+的定義域{-1,1}關(guān)于原點(diǎn)對(duì)稱(chēng);
且f(-1)=f(1)=0
即f(-x)=f(x)且f(-x)=-f(x)
故函數(shù)y=
+即是奇函數(shù)又是偶函數(shù)
(Ⅳ)f(x)=2x
2-1,x∈[-2,3]的定義域不關(guān)于原點(diǎn)對(duì)稱(chēng);
故函數(shù)f(x)=2x
2-1,x∈[-2,3]是非奇非偶函數(shù)
故答案為:奇函數(shù),偶函數(shù),即是奇函數(shù)又是偶函數(shù),非奇非偶函數(shù)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的判斷,熟練掌握函數(shù)奇偶性的判斷方法是解答的關(guān)鍵.