(3)設(shè)..等差數(shù)列的任一 查看更多

 

題目列表(包括答案和解析)

等差數(shù)列{a}是遞增數(shù)列,前n項(xiàng)和為Sn,且a1,a2,a5成等比數(shù)列,S5=a32
(1)求通項(xiàng)an;
(2)令bn=
1
2
(
an+1
an
+
an
an+1
)
,設(shè)Tn=b1+b2+…+bn-n,若M>Tn>m對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)M、m的取值范圍;
(3)試構(gòu)造一個(gè)函數(shù)g(x),使f(n)=a1g(1)+a2g(2)+…+ang(n)<
1
3
(n∈N+)
恒成立,且對(duì)任意的m∈(
1
4
,
1
3
)
,均存在正整數(shù)N,使得當(dāng)n>N時(shí),f(n)>m.

查看答案和解析>>

等差數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三列中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一行.
第一列 第二列 第三列
第一行 -3 3 1
第二行 5 0 2
第三行 -1 2 0
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿(mǎn)足:bn=
an+2
2n
,設(shè)數(shù)列{bn}的前n項(xiàng)和Sn(n∈N*),證明:Sn<2.

查看答案和解析>>

等差數(shù)列{a}是遞增數(shù)列,前n項(xiàng)和為Sn,且a1,a2,a5成等比數(shù)列,
(1)求通項(xiàng)an
(2)令bn=,設(shè)Tn=b1+b2+…+bn-n,若M>Tn>m對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)M、m的取值范圍;
(3)試構(gòu)造一個(gè)函數(shù)g(x),使恒成立,且對(duì)任意的,均存在正整數(shù)N,使得當(dāng)n>N時(shí),f(n)>m.

查看答案和解析>>

設(shè)等差數(shù)列{an}滿(mǎn)足:公差d∈N*,anN*,且{an}中任意兩項(xiàng)之和也是該數(shù)列中的一項(xiàng).若a1=1,則d=
 
; 若a1=25,則d的所有可能取值之和為
 

查看答案和解析>>

設(shè)等差數(shù)列滿(mǎn)足:公差,,且中任意兩項(xiàng)之和也是該數(shù)列中的一項(xiàng).,則 ; 若,則的所有可能取值之和為 .

 

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1.A  2.C  3.C  4.A   5.C   6.B  7.D 8.C   9.D   10.D   11.B  12.D

二、填空題:本大題共4小題,每小題4分,共16分.

13.     14.±2     15.     16.40

三、解答題:本大題共6小題,共74分解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

17.解:

,聯(lián)合

,即

當(dāng)時(shí),

當(dāng)時(shí),

∴當(dāng)時(shí),

當(dāng)時(shí),

18.解:由題意可知,這個(gè)幾何體是直三棱柱,且AC⊥BC,AC=BC=CC1.

   (1)連結(jié)AC1,AB1.

由直三棱柱的性質(zhì)得AA1⊥平面A1B1C1,

所以AA1⊥A1B1,則四邊形ABB1A1為矩形.

由矩形性質(zhì)得AB1過(guò)A1B的中點(diǎn)M.

在△AB1C1中,由中位線(xiàn)性質(zhì)得MN//AC1,

又AC1平面ACC1A1,MN平面ACC1A1,

所以MN//平面ACC1A1

   (2)因?yàn)锽C⊥平面ACC1A1,AC平面ACC1A1,

所以BC⊥AC1.

在正方形ACC1A1中,A1C⊥AC1.

又因?yàn)锽C∩A1C=C,所以AC1⊥平面A1BC.

由MN//AC1,得MN⊥平面A1BC.

   (3)由題意CB,CA,CC1兩兩垂直,故可以C為的點(diǎn),

CB,CA,CC1所在直線(xiàn)分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,

又AC = BC = CC1 = a,

則AB中點(diǎn)E的坐標(biāo)為, 

為平面AA1B的法向量.

又AC1⊥平面A1BC,故為平面A1BC的法向量

設(shè)二面角A―A1B―C的大小為θ,

由題意可知,θ為銳角,所以θ= 60°,即二面角A―A1B―C為60°

19.解:(1)每家煤礦必須整改的概率是1-0.5,且每家煤礦是否整改是相互獨(dú)立的.

所以恰好有兩家煤礦必須整改的概率是

.

   (2)由題設(shè),必須整改的煤礦數(shù)服從二項(xiàng)分布B(5,0.5).從而的數(shù)學(xué)期望是

E,即平均有2.50家煤礦必須整改.

   (3)某煤礦被關(guān)閉,即該煤礦第一次安檢不合格,整改后經(jīng)復(fù)查仍不合格,所以該煤礦被關(guān)閉的概率是,從而該煤礦不被關(guān)閉的概率是0.9.由題意,每家煤礦是否被關(guān)閉是相互獨(dú)立的,所以至少關(guān)閉一家煤礦的概率是

20.(1)依題意,點(diǎn)的坐標(biāo)為,可設(shè),

直線(xiàn)的方程為,與聯(lián)立得

消去

由韋達(dá)定理得,

于是

,

*      當(dāng)

   (2)假設(shè)滿(mǎn)足條件的直線(xiàn)存在,其方程為,

設(shè)的中點(diǎn)為,為直徑的圓相交于點(diǎn)的中點(diǎn)為

點(diǎn)的坐標(biāo)為

,

,

,得,此時(shí)為定值,故滿(mǎn)足條件的直線(xiàn)存在,其方程為,即拋物線(xiàn)的通徑所在的直線(xiàn).

21.解:(1)當(dāng)時(shí),

,∴上是減函數(shù).

   (2)∵不等式恒成立,即不等式恒成立,

不等式恒成立. 當(dāng)時(shí),  不恒成立;

當(dāng)時(shí),不等式恒成立,即,∴.

當(dāng)時(shí),不等式不恒成立. 綜上,的取值范圍是.

22.解:(1)∵ 的橫坐標(biāo)構(gòu)成以為首項(xiàng),為公差的等差數(shù)列

.

位于函數(shù)的圖象上,

,

∴ 點(diǎn)的坐標(biāo)為.

   (2)據(jù)題意可設(shè)拋物線(xiàn)的方程為:,

∵ 拋物線(xiàn)過(guò)點(diǎn)(0,),

,

  ∴

∵ 過(guò)點(diǎn)且與拋物線(xiàn)只有一個(gè)交點(diǎn)的直線(xiàn)即為以為切點(diǎn)的切線(xiàn),

),

   (3)∵    ,

中的元素即為兩個(gè)等差數(shù)列中的公共項(xiàng),它們組成以為首項(xiàng),以為公差的等差數(shù)列.

,且成等差數(shù)列,中的最大數(shù),

,其公差為

*當(dāng)時(shí),,

此時(shí)    ∴ 不滿(mǎn)足題意,舍去.

*當(dāng)時(shí),

此時(shí),

當(dāng)時(shí),

此時(shí), 不滿(mǎn)足題意,舍去.

綜上所述,所求通項(xiàng)為

 

 

 


同步練習(xí)冊(cè)答案