(1)證明:平面平面PAB, (2)求二面角A―BE―P的大小. 查看更多

 

題目列表(包括答案和解析)

如圖,點P是邊長為1的菱形ABCD外一點,,ECD的中點,

(1)證明:平面平面PAB;  

(2)求二面角ABEP的大小。

 

查看答案和解析>>

(14分)

如圖,點P是邊長為1的菱形ABCD外一點,,E是CD的中點,

(1)證明:平面平面PAB;  

(2)求二面角A—BE—P的大小。

 

查看答案和解析>>

(14分)
如圖,點P是邊長為1的菱形ABCD外一點,,E是CD的中點,

(1)證明:平面平面PAB;  
(2)求二面角A—BE—P的大小。

查看答案和解析>>

如圖,點P是邊長為1的菱形ABCD外一點,ECD的中點,

(1)證明:平面平面PAB;  
(2)求二面角ABEP的大小。

查看答案和解析>>

(09年棗莊一模文)(12分)

       如圖,四棱錐P―ABCD的底面ABCD是邊長為1的菱形,,E是CD的中點,

   (1)證明:平面平面PAB;

   (2)求二面角A―BE―P的大小。

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

BADD  CCCB  AADB

二、填空題:本大題共4小 題,每小題4分,共16分。

13.6ec8aac122bd4f6e

14.6ec8aac122bd4f6e

15.-2

16.73

20090406

17.解:(1)6ec8aac122bd4f6e   2分

       6ec8aac122bd4f6e   4分

       6ec8aac122bd4f6e

       6ec8aac122bd4f6e

       6ec8aac122bd4f6e   6分

   (2)6ec8aac122bd4f6e

       根據(jù)正弦函數(shù)的圖象可得:

       當6ec8aac122bd4f6e時,

       6ec8aac122bd4f6e取最大值1   8分

       當6ec8aac122bd4f6e

       6ec8aac122bd4f6e   10分

       6ec8aac122bd4f6e

       即6ec8aac122bd4f6e   12分

18.解:先后拋擲兩枚骰子可能出現(xiàn)的情況:(1,1),(1,2),(1,3),…,(1,6);(2,1)(2,2),(2,3),…,(2,6);…;(6,1),(6,2),(6,3),…,(6,6),基本事件總數(shù)為36。   2分

   (1)在上述基本事件中,“點數(shù)之和等于3”的事件只有(1,2),(2,1)兩個可能,點數(shù)之和等于2的只有(1,1)一個可能的結果,記點數(shù)之和不大于3為事件A1,則事件A1發(fā)生的概率為:6ec8aac122bd4f6e   4分

       6ec8aac122bd4f6e事件“出現(xiàn)的點數(shù)之和大于3”發(fā)生的概率為

       6ec8aac122bd4f6e   7分

   (2)與(1)類似,在上述基本事件中,“點數(shù)之積是3的倍數(shù)”的事件有20個可能的結果。

       所以事件“出現(xiàn)的點數(shù)之積是3的倍數(shù)”發(fā)生的概率為

       6ec8aac122bd4f6e   12分

       6ec8aac122bd4f6eBCD是等邊三角形,

       6ec8aac122bd4f6eE是CD的中點,6ec8aac122bd4f6e

       而AB//CD,6ec8aac122bd4f6e   2分

       又6ec8aac122bd4f6e平面ABCD,

       6ec8aac122bd4f6e

       而呵呵平面PAB。   4分

       又平面PAB。   6分

   (2)由(1)知,平面PAB,所以

       又是二面角A―BE―P的平面角  9分

       平面ABCD,

      

       在

      

       故二面角A―BE―P的大小是   12分

20.解:(1)

       是首項為的等比數(shù)列   2分

          4分

       當仍滿足上式。

      

       注:未考慮的情況,扣1分。

   (2)由(1)得,當時,

          8分

      

      

       兩式作差得

      

      

          12分

 

 

21.解:(1)因為且AB通過原點(0,0),所以AB所在直線的方程為

       由得A、B兩點坐標分別是A(1,1),B(-1,-1)。

<form id="aezbl"><em id="aezbl"></em></form>
    1. <strike id="aezbl"><output id="aezbl"><rt id="aezbl"></rt></output></strike>

             又的距離。

                4分

         (2)設AB所在直線的方程為

             由

             因為A,B兩點在橢圓上,所以

            

             即   5分

             設A,B兩點坐標分別為,則

            

             且   6分

            

               8分

             又的距離,

             即   10分

            

             邊最長。(顯然

             所以AB所在直線的方程為   12分

      22.解:(1)

             當

             令   3分

             當的變化情況如下表:

            

      0

      2

      -

      0

      +

      0

      -

      0

      +

      單調(diào)遞減

      極小值

      單調(diào)遞增

      極大值

      單調(diào)遞減

      極小值

      單調(diào)遞增

             所以上是增函數(shù),

             在區(qū)間上是減函數(shù)   6分

         (2)的根。

             處有極值。

             則方程有兩個相等的實根或無實根,

                8分

             解此不等式,得

             這時,是唯一極值。

             因此滿足條件的   10分

             注:若未考慮進而得到,扣2分。

         (3)由(2)知,當恒成立。

             當上是減函數(shù),

             因此函數(shù)   12分

             又上恒成立。

            

             于是上恒成立。

            

             因此滿足條件的   14分

       

       


      同步練習冊答案