同理可證.∴. 查看更多

 

題目列表(包括答案和解析)

計算機(jī)考試分理論考試與實際操作考試兩部分進(jìn)行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機(jī)考試“合格“并頒發(fā)”合格證書“.甲、乙、丙三人在理論考試中“合格”的概率依次為,在實際操作考試中“合格”的概率依次為,所有考試是否合格相互之間沒有影響。

1)假設(shè)甲、乙、丙3人同時進(jìn)行理論與實際操作兩項考試,誰獲得“合格證書”的可能性大?

2)求這3人進(jìn)行理論與實際操作兩項考試后,恰有2人獲得“合格證書”的概率;

3)用X表示甲、乙、丙3人計算機(jī)考試獲“合格證書”的人數(shù),求X的分布列和數(shù)學(xué)期望EX。

 

查看答案和解析>>

對于不等式某同學(xué)應(yīng)用數(shù)學(xué)歸納法證明的過程如下:

(1)當(dāng)時,,不等式成立

(2)假設(shè)時,不等式成立,即

那么時,

不等式成立根據(jù)(1)(2)可知,對于一切正整數(shù)不等式都成立。上述證明方法(     )

A.過程全部正確           B.驗證不正確

C.歸納假設(shè)不正確         D.從的推理不正確

 

查看答案和解析>>

計算機(jī)考試分理論考試與實際操作考試兩部分進(jìn)行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機(jī)考試“合格“并頒發(fā)”合格證書“.甲、乙、丙三人在理論考試中“合格”的概率依次為,在實際操作考試中“合格”的概率依次為,所有考試是否合格相互之間沒有影響。
(1)假設(shè)甲、乙、丙3人同時進(jìn)行理論與實際操作兩項考試,誰獲得“合格證書”的可能性大?
(2)求這3人進(jìn)行理論與實際操作兩項考試后,恰有2人獲得“合格證書”的概率;
(3)用X表示甲、乙、丙3人計算機(jī)考試獲“合格證書”的人數(shù),求X的分布列和數(shù)學(xué)期望EX。

查看答案和解析>>

計算機(jī)考試分理論考試與實際操作考試兩部分進(jìn)行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機(jī)考試“合格“并頒發(fā)”合格證書“.甲、乙、丙三人在理論考試中“合格”的概率依次為,在實際操作考試中“合格”的概率依次為,所有考試是否合格相互之間沒有影響。
(1)假設(shè)甲、乙、丙3人同時進(jìn)行理論與實際操作兩項考試,誰獲得“合格證書”的可能性大?
(2)求這3人進(jìn)行理論與實際操作兩項考試后,恰有2人獲得“合格證書”的概率;
(3)用X表示甲、乙、丙3人計算機(jī)考試獲“合格證書”的人數(shù),求X的分布列和數(shù)學(xué)期望EX。

查看答案和解析>>

對于不等式某同學(xué)應(yīng)用數(shù)學(xué)歸納法證明的過程如下:
(1)當(dāng)時,,不等式成立
(2)假設(shè)時,不等式成立,即
那么時,

不等式成立根據(jù)(1)(2)可知,對于一切正整數(shù)不等式都成立。上述證明方法(    )
A.過程全部正確B.驗證不正確
C.歸納假設(shè)不正確D.從的推理不正確

查看答案和解析>>


同步練習(xí)冊答案