∴⊥平面.又是矩形.∴可建立如圖所示的空間直角坐標(biāo)系 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)在矩形ABCD中,已知AD=6,AB=2,E、F為AD的兩個(gè)三等分點(diǎn),AC和BF交于點(diǎn)G,△BEG的外接圓為⊙H.以DA所在直線為x軸,以DA中點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系.
(1)求以F、E為焦點(diǎn),DC和AB所在直線為準(zhǔn)線的橢圓的方程.
(2)求⊙H的方程.
(3)設(shè)點(diǎn)P(0,b),過(guò)點(diǎn)P作直線與⊙H交于M,N兩點(diǎn),若點(diǎn)M恰好是線段PN的中點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

精英家教網(wǎng)已知矩形ABCD中,AB=2
2
,BC=1.以AB的中點(diǎn)O為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系xoy.
(1)求以A,B為焦點(diǎn),且過(guò)C,D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)P(0,2)的直線l與(1)中的橢圓交于M,N兩點(diǎn),是否存在直線l,使得以線段MN為直徑的圓恰好過(guò)原點(diǎn)?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

在矩形ABCD中,以DA所在直線為x軸,以DA中點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系.已知點(diǎn)B的坐標(biāo)為(3,2),E、F為AD的兩個(gè)三等分點(diǎn),AC和BF交于點(diǎn)G,△BEG的外接圓為⊙H.
(1)求證:EG⊥BF;
(2)求⊙H的方程;
(3)設(shè)點(diǎn)P(0,b),過(guò)點(diǎn)P作直線與⊙H交于M,N兩點(diǎn),若點(diǎn)M恰好是線段PN的中點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

如圖所示的長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,的交點(diǎn),是線段的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:平面

(Ⅲ)求二面角的大。

【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面平面,∴平面,又,∴平面. 可得證明

(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵,

為平面的法向量.∴利用法向量的夾角公式,,

的夾角為,即二面角的大小為

方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn),

,又點(diǎn),,∴

,且不共線,∴

平面,平面,∴平面.…………………4分

(Ⅱ)∵,

,即,

,∴平面.   ………8分

(Ⅲ)∵,,∴平面,

為面的法向量.∵,

為平面的法向量.∴

的夾角為,即二面角的大小為

 

查看答案和解析>>

在矩形中,以所在直線為軸,以中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系.已知點(diǎn)的坐標(biāo)為,E、F為的兩個(gè)三等分點(diǎn),交于點(diǎn),的外接圓為⊙

(1)求證:;

(2)求⊙的方程;

(3)設(shè)點(diǎn),過(guò)點(diǎn)P作直線與⊙交于M,N兩點(diǎn),若點(diǎn)M恰好是線段PN的中點(diǎn),求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案