知平面. 查看更多

 

題目列表(包括答案和解析)

2.A解析:由知函數(shù)在上有零點,又因為函數(shù)在(0,+)上是減函數(shù),所以函數(shù)y=f(x) 在(0,+)上有且只有一個零點不妨設(shè)為,則,又因為函數(shù)是偶函數(shù),所以=0并且函數(shù)在(0,+)上是減函數(shù),因此-是(-,0)上的唯一零點,所以函數(shù)共有兩個零點

下列敘述中,是隨機變量的有(    )

①某工廠加工的零件,實際尺寸與規(guī)定尺寸之差;②標準狀態(tài)下,水沸騰的溫度;③某大橋一天經(jīng)過的車輛數(shù);④向平面上投擲一點,此點坐標.

A.②③         B.①②     C.①③④       D.①③

查看答案和解析>>

在復(fù)平面內(nèi), 是原點,向量對應(yīng)的復(fù)數(shù)是,=2+i。

(Ⅰ)如果點A關(guān)于實軸的對稱點為點B,求向量對應(yīng)的復(fù)數(shù)

(Ⅱ)復(fù)數(shù),對應(yīng)的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結(jié)論。

【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O(shè)為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點在同一個圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點到原點O的距離相等,

∴A、B、C、D四點在以O(shè)為圓心,為半徑的圓上

 

查看答案和解析>>

已知:在平面直角坐標系xOy中,二次函數(shù)y=x2-(m+1)x-m-2的圖象與x軸交于A、B兩點,點A在x軸的負半軸,點B在x軸的正半軸,與y軸交于點C,且OB=3OA.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點為D,過點A的直線y=
1
2
x+
1
2
與拋物線交于點E.問:在拋物線的對稱軸上是否存在這樣的點F,使得△ABE與以B、D、F為頂點的三角形相似,若存在,求出點F的坐標;若不存在,請說明理由;
(3)點G(x,1)在拋物線上,求出過點A、B、G的圓的圓心的坐標.

查看答案和解析>>

已知:在平面直角坐標系xOy中,二次函數(shù)y=x2-(m+1)x-m-2的圖象與x軸交于A、B兩點,點A在x軸的負半軸,點B在x軸的正半軸,與y軸交于點C,且OB=3OA.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點為D,過點A的直線y=
1
2
x+
1
2
與拋物線交于點E.問:在拋物線的對稱軸上是否存在這樣的點F,使得△ABE與以B、D、F為頂點的三角形相似,若存在,求出點F的坐標;若不存在,請說明理由;
(3)點G(x,1)在拋物線上,求出過點A、B、G的圓的圓心的坐標.

查看答案和解析>>

已知:在平面直角坐標系xOy中,二次函數(shù)y=x2-(m+1)x-m-2的圖象與x軸交于A、B兩點,點A在x軸的負半軸,點B在x軸的正半軸,與y軸交于點C,且OB=3OA.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點為D,過點A的直線與拋物線交于點E.問:在拋物線的對稱軸上是否存在這樣的點F,使得△ABE與以B、D、F為頂點的三角形相似,若存在,求出點F的坐標;若不存在,請說明理由;
(3)點G(x,1)在拋物線上,求出過點A、B、G的圓的圓心的坐標.

查看答案和解析>>


同步練習(xí)冊答案