題目列表(包括答案和解析)
閱讀下面的文言文,完成下面5題。
李斯論 (清)姚鼐
蘇子瞻謂李斯以荀卿之學(xué)亂天下,是不然。秦之亂天下之法,無(wú)待于李斯,斯亦未嘗以其學(xué)事秦。
|
君子之仕也,進(jìn)不隱賢;小人之仕也,無(wú)論所學(xué)識(shí)非也,即有學(xué)識(shí)甚當(dāng),見(jiàn)其君國(guó)行事,悖謬無(wú)義,疾首嚬蹙于私家之居,而矜夸導(dǎo)譽(yù)于朝庭之上,知其不義而勸為之者,謂天下將諒我之無(wú)可奈何于吾君,而不吾罪也;知其將喪國(guó)家而為之者,謂當(dāng)吾身容可以免也。且夫小人雖明知世之將亂,而終不以易目前之富貴,而以富貴之謀,貽天下之亂,固有終身安享榮樂(lè),禍遺后人,而彼宴然①無(wú)與者矣。嗟乎!秦未亡而斯先被五刑夷三族也,其天之誅惡人,亦有時(shí)而信也邪!
且夫人有為善而受教于人者矣,未聞為惡而必受教于人者也。荀卿述先王而頌言儒效,雖間有得失,而大體得治世之要。而蘇氏以李斯之害天下罪及于卿,不亦遠(yuǎn)乎?行其學(xué)而害秦者,商鞅也;舍其學(xué)而害秦者,李斯也。商君禁游宦,而李斯諫逐客②,其始之不同術(shù)也,而卒出于同者,豈其本志哉!宋之世,王介甫以平生所學(xué),建熙寧新法,其后章惇、曾布、張商英、蔡京之倫,曷嘗學(xué)介甫之學(xué)耶?而以介甫之政促亡宋,與李斯事頗相類(lèi)。夫世言法術(shù)之學(xué)足亡人國(guó),固也。吾謂人臣善探其君之隱,一以委曲變化從世好者,其為人尤可畏哉!尤可畏哉!
[注釋]①宴然:安閑的樣子。②諫逐客:秦始皇曾發(fā)布逐客令,驅(qū)逐六國(guó)來(lái)到秦國(guó)做官的人,李斯寫(xiě)了著名的《諫逐客書(shū)》,提出了反對(duì)意見(jiàn)。
對(duì)下列句子中加點(diǎn)的詞語(yǔ)的解釋?zhuān)徽_的一項(xiàng)是( )
A.非是不足以中侈君張吾之寵 中:符合
B.滅三代法而尚督責(zé) 尚:崇尚
C.知其不義而勸為之者 勸:鼓勵(lì)
D.而終不以易目前之富貴 易:交換
下列各組句子中,加點(diǎn)的詞的意義和用法相同的一組是( )
A.因秦國(guó)地形便利 不如因普遇之
B.設(shè)所遭值非始皇、二世 非其身之所種則不食
C.且夫小人雖明知世之將亂 臣死且不避,卮酒安足辭
D.不亦遠(yuǎn)乎 王之好樂(lè)甚,則齊國(guó)其庶幾乎
下列各項(xiàng)中,加點(diǎn)詞語(yǔ)與現(xiàn)代漢語(yǔ)意義不相同的一項(xiàng)是( )
A.小人之仕也,無(wú)論所學(xué)識(shí)非也
B.而大體得治世之要
C.而以富貴之謀,貽天下之亂
D.一以委曲變化從世好者
下列各句中對(duì)文章的闡述,不正確的一項(xiàng)是( )
A.蘇軾認(rèn)為李斯以荀卿之學(xué)輔佐秦朝行暴政,致使天下大亂,作者則認(rèn)為李斯是完全舍棄了荀子的說(shuō)學(xué),李斯的做法只不過(guò)是追隨時(shí)勢(shì)罷了。
B.作者由論李斯事秦進(jìn)而泛論人臣事君的問(wèn)題,強(qiáng)調(diào)為臣者對(duì)于國(guó)君的“悖謬無(wú)義”之政,不應(yīng)為自身的富貴而阿附甚至助長(zhǎng)之。
C.此文主旨在于指出秦行暴政是君王自身的原因,作者所論的不可“趨時(shí)”,“中侈君張吾之寵”的道理,在今天仍有借鑒意義。
D.文章開(kāi)門(mén)見(jiàn)山,擺出蘇軾的觀點(diǎn),然后通過(guò)對(duì)秦國(guó)發(fā)展歷史的分析,駁斥了蘇說(shuō)的謬論,提出了自己的見(jiàn)解。論證嚴(yán)密,逐層深入,是一篇典范的史論。
把文言文閱讀材料中畫(huà)橫線的句子翻譯成現(xiàn)代漢語(yǔ)。
(1)秦之甘于刻薄而便于嚴(yán)法久矣
譯文:
(2)謂天下將諒我之無(wú)可奈何于吾君,而不吾罪也
譯文:
(3)其始之不同術(shù)也,而卒出于同者,豈其本志哉
譯文:
已知數(shù)列的前項(xiàng)和為,且 (N*),其中.
(Ⅰ) 求的通項(xiàng)公式;
(Ⅱ) 設(shè) (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到,②由于,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時(shí),由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對(duì)偶式)設(shè),,
則.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;
②假設(shè)時(shí),命題成立,即,
則當(dāng)時(shí),
即
即
故當(dāng)時(shí),命題成立.
綜上可知,對(duì)一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿(mǎn)足,.?dāng)?shù)列滿(mǎn)足,,為數(shù)列的前n項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)利用在中,令n=1,n=2,
得 即
解得,, [
又時(shí),滿(mǎn)足,
,
第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí) 需滿(mǎn)足.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時(shí)取得最小值-6.
此時(shí) 需滿(mǎn)足.
第三問(wèn),
若成等比數(shù)列,則,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又時(shí),滿(mǎn)足,
,
.
(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí) 需滿(mǎn)足.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時(shí)取得最小值-6.
此時(shí) 需滿(mǎn)足.
綜合①、②可得的取值范圍是.
(3),
若成等比數(shù)列,則,
即.
由,可得,即,
.
又,且m>1,所以m=2,此時(shí)n=12.
因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列
問(wèn)題:將y=2x的圖象向________平行移動(dòng)________個(gè)單位,再作關(guān)于直線y=x對(duì)稱(chēng)的圖象,可得函數(shù)y=log2(x+1)的圖象.
對(duì)于此問(wèn)題,甲、乙、丙三位同學(xué)分別給出了不同的解法:
甲:在同一坐標(biāo)系內(nèi)分別作y=2x與y=log2(x+1)的圖象,直接觀察,可知向下平行移動(dòng)1個(gè)單位即得.
乙:與函數(shù)y=log2(x+1)的圖象關(guān)于直線y=x對(duì)稱(chēng)的曲線是它的反函數(shù)y=2x-1的圖象,為了得到它,只需將y=2x的圖象向下平移1個(gè)單位.
丙:由所以點(diǎn)(0,0)在函數(shù)y=log2(x+1)的圖象上,(0,0)點(diǎn)關(guān)于y=x的對(duì)稱(chēng)的點(diǎn)還是其本身.函數(shù)y=2x的圖象向左或向右或向上平行移動(dòng)都不會(huì)過(guò)(0,0)點(diǎn),因此只能向下平行移動(dòng)1個(gè)單位.
你贊同誰(shuí)的解法?你還有其他更好的解法嗎?
菲爾茲獎(jiǎng)是數(shù)學(xué)家們?yōu)橘澰S和緬懷JCg菲爾茲的遠(yuǎn)見(jiàn)卓識(shí)、組織才能和他為促進(jìn)數(shù)學(xué)事業(yè)的國(guó)際交流中所表現(xiàn)出來(lái)的無(wú)私奉獻(xiàn)的偉大精神而設(shè)立的,資金是JCg菲爾茲的遺產(chǎn)及1924年國(guó)際數(shù)學(xué)大會(huì)的剩余經(jīng)費(fèi),菲爾茲獎(jiǎng)是一枚金質(zhì)獎(jiǎng)?wù)潞? 500美元的獎(jiǎng)金,獎(jiǎng)?wù)碌恼媸前⒒椎碌母〉耦^像.
菲爾茲獎(jiǎng)的一個(gè)最大特點(diǎn)就是獎(jiǎng)勵(lì)年輕人,只授予40歲以下的數(shù)學(xué)家,即授予那些對(duì)未來(lái)數(shù)學(xué)發(fā)展起到重大作用的人.
每次國(guó)際數(shù)學(xué)大會(huì)的召開(kāi),從國(guó)際上權(quán)威性的數(shù)學(xué)雜志到一般性的數(shù)學(xué)刊物,都爭(zhēng)相報(bào)道獲獎(jiǎng)人物.對(duì)于年輕人來(lái)說(shuō),菲爾茲獎(jiǎng)是國(guó)際上最高的數(shù)學(xué)獎(jiǎng).菲爾茲獎(jiǎng)就獎(jiǎng)金數(shù)目來(lái)說(shuō)與諾貝爾獎(jiǎng)相比可以說(shuō)微不足道,但為什么在人們心目中它的地位竟如此崇高呢?主要原因有三:第一,它是由數(shù)學(xué)界的國(guó)際權(quán)威學(xué)術(shù)團(tuán)體——國(guó)際數(shù)學(xué)聯(lián)合會(huì)主持,從全世界的第一流的青年數(shù)學(xué)家中評(píng)選出來(lái)的;第二,它是在每隔四年才召開(kāi)一次的國(guó)際數(shù)學(xué)大會(huì)上隆重頒發(fā)的,且每次獲獎(jiǎng)?wù)邇H有二至四名,因此獲獎(jiǎng)的機(jī)會(huì)比諾貝爾獎(jiǎng)還要少;第三,也是根本的一條,由于得獎(jiǎng)人的出色才干,贏得了國(guó)際社會(huì)的聲譽(yù).正如本世紀(jì)著名數(shù)學(xué)家C.H.H.外爾對(duì)1954年兩位獲獎(jiǎng)?wù)叩脑u(píng)價(jià):“他們所達(dá)到的高度是自己未曾想到的”“自己從未見(jiàn)過(guò)這樣的明星在數(shù)學(xué)的天空中燦爛升起”“數(shù)學(xué)界為你們二位所做的工作感到驕傲”.
1.同學(xué)們,讀了上面的材料,你做好了將來(lái)為數(shù)學(xué)作出貢獻(xiàn)的心理準(zhǔn)備了嗎?
2.至今為止,我們國(guó)家還沒(méi)有一人獲得菲爾茲獎(jiǎng),對(duì)此你有何感想?
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com