已知數(shù)列的前項(xiàng)和為,且 (N*),其中.
(Ⅰ) 求的通項(xiàng)公式;
(Ⅱ) 設(shè) (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到,②由于,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時(shí),由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對(duì)偶式)設(shè),,
則.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;
②假設(shè)時(shí),命題成立,即,
則當(dāng)時(shí),
即
即
故當(dāng)時(shí),命題成立.
綜上可知,對(duì)一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)
已知數(shù)列的前項(xiàng)和為,若且.
(Ⅰ)求證是等差數(shù)列,并求出的表達(dá)式;
(Ⅱ) 若,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列的前項(xiàng)和為,求這個(gè)數(shù)列的通項(xiàng)公式.這個(gè)數(shù)列是等差數(shù)列嗎?如果是,它的首項(xiàng)與公差分別是什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆福建省龍巖市高三上學(xué)期期末考試數(shù)學(xué)理卷(非一級(jí)校) 題型:解答題
(本題滿分13分)
已知數(shù)列的前項(xiàng)和為,滿足.
(Ⅰ)證明:數(shù)列為等比數(shù)列,并求出;
(Ⅱ)設(shè),求的最大項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年四川省瀘縣二中高2013屆春期重點(diǎn)班第一學(xué)月考試數(shù)學(xué)試題 題型:解答題
(本小題14分)已知數(shù)列{}的前項(xiàng)和為,且=();=3
且(),
(1)寫(xiě)出;
(2)求數(shù)列{},{}的通項(xiàng)公式和;
(3)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,數(shù)列的前項(xiàng)和為,若不等式 對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com