題目列表(包括答案和解析)
2 |
3 |
5 |
10 |
θm |
cosθm |
θ1+θ2 |
44(cosθ2-cosθ1) |
蕩秋千是一項古老的運動,秋千是一塊板用兩根繩系在兩個固定的懸點組成,設某人的質量為m,身高為H,站立時重心離腳底H/2,蹲下時重心離腳底H/4,繩子懸掛點到踏板的繩長為6H,繩子足夠柔軟且不可伸長,繩子和踏板的質量不計,人身體始終與繩子保持平行,重力加速度為g。
1.若該人在踏板上保持站式,由伙伴將其推至擺角θ0(單位:rad),由靜止釋放,忽略空氣阻力,求擺至最低點時每根繩的拉力大;
2.若該人在踏板上保持站式,由伙伴將其推至擺角θ1 (單位:rad),由靜止釋放,擺至另一側最大擺角為θ2(單位:rad),設空氣阻力大小恒定,作用點距離腳底為H/3,求空氣阻力的大小。
3.若該人在踏板上采取如下步驟:當蕩至最高處時,突然由蹲式迅速站起,而后緩緩蹲下,擺至另一側最高處時已是蹲式,在該處又迅速站起,之后不斷往復,可以蕩起很高。用此法可以蕩起的最大擺角為θm 弧度,假設人的“緩緩蹲下”這個動作不會導致系統(tǒng)機械能的損耗,而且空氣阻力大小和作用點與第(2)問相同,試證明:。
1.D 2.AD 3.BD 4.D 5. C 6.AD 7.B 8.AD 9.AD 10.B
11. 100J 75J 12. 15N
13. 解:設卡車運動的速度為v0,剎車后至停止運動,由動能定理:-μmgs=0-。得v==
14. 解:當人向右勻速前進的過程中,繩子與豎直
方向的夾角由0°逐漸增大,人的拉力就發(fā)生了變化,
故無法用W=Fscosθ計算拉力所做的功,而在這個過
程中,人的拉力對物體做的功使物體的動能發(fā)生了變
化,故可以用動能定理來計算拉力做的功。
當人在滑輪的正下方時,物體的初速度為零,
當人水平向右勻速前進s 時物體的速度為v1 ,由圖
1可知: v1= v0sina
⑴根據動能定理,人的拉力對物體所做的功
W=m v12/2-0
⑵由⑴、⑵兩式得W=ms2 v12/2(s2+h2)
15. 解:(1)對AB段應用動能定理:mgR+Wf=
所以:Wf=-mgR=-20×10-3×10×1=-0.11J
(2)對BC段應用動能定理:Wf=0-=-=-0.09J。又因Wf=μmgBCcos1800=-0.09,得:μ=0.153。
16. 解:在此過程中,B的重力勢能的增量為,A、B動能增量為,恒力F所做的功為,用表示A克服摩擦力所做的功,根據功能關系有:
解得:
17. 解:(1)兒童從A點滑到E點的過程中,重力做功W=mgh
兒童由靜止開始滑下最后停在E點,在整個過程中克服摩擦力做功W1,由動能定理得,
=0,則克服摩擦力做功為W1=mgh
(2)設斜槽AB與水平面的夾角為,兒童在斜槽上受重力mg、支持力N1和滑動摩擦
力f1,,兒童在水平槽上受重力mg、支持力N2和滑動摩擦力f2,
,兒童從A點由靜止滑下,最后停在E點.
由動能定理得,
解得,它與角無關.
(3)兒童沿滑梯滑下的過程中,通過B點的速度最大,顯然,傾角越大,通過B點的速度越大,設傾角為時有最大速度v,由動能定理得,
解得最大傾角
18. 解:(1)根據牛頓第二定律有:
設勻加速的末速度為,則有:、
代入數值,聯立解得:勻加速的時間為:
(2)當達到最大速度時,有:
解得:汽車的最大速度為:
(3)汽車勻加速運動的位移為:
在后一階段牽引力對汽車做正功,重力和阻力做負功,根據動能定理有:
又有
代入數值,聯立求解得:
所以汽車總的運動時間為:
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com