(Ⅰ).求的值, 查看更多

 

題目列表(包括答案和解析)

   (),其中,將的最小值記為,

(1)求的表達式;

(2)當時,要使關(guān)于的方程有且僅有一個實根,求實數(shù)的取值范圍.

 

查看答案和解析>>


),其中,將的最小值記為,
(1)求的表達式;
(2)當時,要使關(guān)于的方程有且僅有一個實根,求實數(shù)的取值范圍.

查看答案和解析>>

(Ⅰ)在如圖的坐標系中作出同時滿足約束條件:x+y-1≥0;x-y+1≥0;4x+y-2≥0的可行性區(qū)域;
(Ⅱ)若實數(shù)x,y滿足(Ⅰ)中約束條件,求目標函數(shù)
x+yx
的取值范圍.精英家教網(wǎng)

查看答案和解析>>

20、(Ⅰ)求y=4x-2x+1的值域;
(Ⅱ)關(guān)于x的方程4x-2x+1+a=0有解,求實數(shù)a的取值范圍.

查看答案和解析>>

(Ⅰ)化簡:
1+2sin20°cos160°
sin160°-
1-sin220°
;
(Ⅱ)已知:tana=3,求
2cos(
π
2
-a)-3sin(
2
+a) 
4cos(-a)+sin(-2π-a)
的值.

查看答案和解析>>

一、            選擇題(每小題5分,共60分)

 

BBDACA     CDBDBA

 

二、填空題(每小題4分,共16分)

13.       14.         15.        16.

三、解答題

17.(本小題滿分12分)

解:(Ⅰ)∵

,得

兩邊平方:=,∴= ………………6分

(Ⅱ)∵,

,解得,

又∵, ∴,

,

設(shè)的夾角為,則,∴

的夾角為. …………… 12分

18. (本小題滿分12分)

解:(Ⅰ)小王在第三次考試中通過而領(lǐng)到駕照的概率為:

            ………………………6分

          (Ⅱ)小王在一年內(nèi)領(lǐng)到駕照的概率為:

………………12分

19.(本小題滿分12分)

(Ⅰ)證明:由已知得,所以,即

,,∴, 平面

∴平面平面.……………………………4分(文6分)

(Ⅱ)解:設(shè)的中點為,連接,則,

是異面直線所成的角或其補角

由(Ⅰ)知,在中,,,

.

所以異面直線所成的角為.…………………8分(文12分)

20.(本小題滿分12分)

解:(Ⅰ)∵        

據(jù)題意,,

  ………………………4分

         (Ⅱ)由(Ⅰ)知,

             ∴

∴對于,最小值為 ………………… 8分

的對稱軸為,且拋物線開口向下,

時,最小值為中較小的,

,

∴當時,的最小值是-7.

的最小值為-11. ………………………12分

21.(本小題滿分12分)

解:(Ⅰ)∵

          ∴

,則,∴

,∴

.……………6分

     (Ⅱ)證明:由(Ⅰ)知:

          記

          用錯位相減法求和得:

          令

          ∵

          ∴數(shù)列是遞減數(shù)列,∴

          ∴.

          即.………………………12分

       (由證明也給滿分)

22.(本小題滿分14分)

解:(Ⅰ)①當直線軸時,

,此時,∴.

(不討論扣1分)

②當直線不垂直于軸時,,設(shè)雙曲線的右準線為,

,作,作且交軸于

根據(jù)雙曲線第二定義有:,

到準線的距離為.

,得:,

,∴,∵此時,∴

綜上可知.………………………………………7分

(Ⅱ)設(shè),代入雙曲線方程得

,則,且代入上面兩式得:

 ①

     ②

由①②消去

  ③

有:,綜合③式得

,解得

的取值范圍為…………………………14分

 

 

 

 

 

 


同步練習(xí)冊答案