題目列表(包括答案和解析)
數(shù)列
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)數(shù)列的通項公式;
(Ⅲ)設,求數(shù)列的前項和。
(14分)已知數(shù)列
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設,試推斷是否存在常數(shù)A,B,C,使對一切都有成立?說明你的理由;
(Ⅲ)求證:一、 選擇題(每小題5分,共60分)
CADACD CDBDBA
二、填空題(每小題4分,共16分)
13. 14. 15. 16.
三、解答題
17.(本小題滿分12分)
解:(Ⅰ)∵,
由,得
兩邊平方:=,∴= ………………6分
(Ⅱ)∵,
∴,解得,
又∵, ∴,
∴,,
設的夾角為,則,∴
即的夾角為. …………… 12分
18. (本小題滿分12分)
解:(Ⅰ)小王在一年內領到駕照的概率為:
………………………( 4分)
(Ⅱ)的取值分別為1,2,3.
,
………………………( 8分)
所以小王參加考試次數(shù)的分布列為:
1
2
3
0.6
0.28
0.12
所以的數(shù)學期望為 ……………………12分
19.(本小題滿分12分)
(Ⅰ)證明:由已知得,所以,即,
又,,∴, 平面
∴平面平面.……………………………4分(文6分)
(Ⅱ)解:設的中點為,連接,則∥,
∴是異面直線和所成的角或其補角
由(Ⅰ)知,在中,,,
∴.
所以異面直線和所成的角為.…………………8分(文12分)
(Ⅲ)(解法一)由已知得四邊形是正方形,
∴又,∴,
過點做于,連接,則,
則即二面角的平面角,
在中,,所以,
又,由余弦定理得,
所以二面角的大小為.……………12分
(解法二)向量法
設為的中點,則,以為坐標原點,所在直線分別為軸建立空間直角坐標系,
則,
設平面的法向量
由得由得所以
同理得平面的法向量
,
所以所求二面角的大小為.………………12分
20.(本小題滿分12分)
解:(Ⅰ)
當時,,∴.
當
……………6分
(Ⅱ)當時,由(Ⅰ)的討論可知
即
∴
∴………………12分
21.(本小題滿分12分)
解:(Ⅰ)∵
∴
∴
令,則,∴
,∴
∴.……………6分
(Ⅱ)證明:
∴
又∵,∴
∴
∴.………………12分
22.(本小題滿分14分)
解:(Ⅰ)①當直線軸時,
則,此時,∴.
(不討論扣1分)
②當直線不垂直于軸時,,設雙曲線的右準線為,
作于,作于,作于且交軸于
根據(jù)雙曲線第二定義有:,
而到準線的距離為.
由,得:,
∴,∴,∵此時,∴
綜上可知.………………………………………7分
(Ⅱ)設:,代入雙曲線方程得
∴
令,則,且代入上面兩式得:
①
②
由①②消去得
即 ③
由有:,綜合③式得
由得,解得
∴的取值范圍為…………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com