(2)當d>0時.求Tn. 查看更多

 

題目列表(包括答案和解析)

已知等差數(shù)列an中,公差d>0,其前n項和為Sn,且滿足a2•a3=45,a1+a4=14.
(1)求數(shù)列an的通項公式;
(2)設由bn=
Sn
n+c
(c≠0)構成的新數(shù)列為bn,求證:當且僅當c=-
1
2
時,數(shù)列bn是等差數(shù)列;
(3)對于(2)中的等差數(shù)列bn,設cn=
8
(an+7)•bn
(n∈N*),數(shù)列cn的前n項和為Tn,現(xiàn)有數(shù)列f(n),f(n)=
2bn
an-2
-Tn
(n∈N*),
求證:存在整數(shù)M,使f(n)≤M對一切n∈N*都成立,并求出M的最小值.

查看答案和解析>>

已知等差數(shù)列{an}中,公差d>0,其前n項和為Sn,且滿足a2•a3=45,a1=a4=14.
(1)求數(shù)列{an}的通項公式;
(2)設由bn=數(shù)學公式(c≠0)構成的新數(shù)列為{bn},求證:當且僅當c=-數(shù)學公式時,數(shù)列{bn}是等差數(shù)列;
(3)對于(2)中的等差數(shù)列{bn},設cn=數(shù)學公式(n∈N*),數(shù)列{cn}的前n項和為Tn,現(xiàn)有數(shù)列{f(n)},f(n)=Tn•(an+3-數(shù)學公式)•0.9n(n∈N*),是否存在n0∈N*,使f(n)≤f(n0)對一切n∈N*都成立?若存在,求出n0的值,若不存在,請說明理由.

查看答案和解析>>

已知等差數(shù)列{an}中,公差d>0,其前n項和為Sn,且滿足a2•a3=45,a1=a4=14.
(1)求數(shù)列{an}的通項公式;
(2)設由bn=
Sn
n+c
(c≠0)構成的新數(shù)列為{bn},求證:當且僅當c=-
1
2
時,數(shù)列{bn}是等差數(shù)列;
(3)對于(2)中的等差數(shù)列{bn},設cn=
8
(an+7)•bn
(n∈N*),數(shù)列{cn}的前n項和為Tn,現(xiàn)有數(shù)列{f(n)},f(n)=Tn•(an+3-
8
bn
)•0.9n(n∈N*),是否存在n0∈N*,使f(n)≤f(n0)對一切n∈N*都成立?若存在,求出n0的值,若不存在,請說明理由.

查看答案和解析>>

已知等差數(shù)列an中,公差d>0,其前n項和為Sn,且滿足a2•a3=45,a1+a4=14.
(1)求數(shù)列an的通項公式;
(2)設由bn=
Sn
n+c
(c≠0)構成的新數(shù)列為bn,求證:當且僅當c=-
1
2
時,數(shù)列bn是等差數(shù)列;
(3)對于(2)中的等差數(shù)列bn,設cn=
8
(an+7)•bn
(n∈N*),數(shù)列cn的前n項和為Tn,現(xiàn)有數(shù)列f(n),f(n)=
2bn
an-2
-Tn
(n∈N*),
求證:存在整數(shù)M,使f(n)≤M對一切n∈N*都成立,并求出M的最小值.

查看答案和解析>>

已知等差數(shù)列{an}中,公差d>0,其前n項和為Sn,且滿足a2•a3=45,a1=a4=14.
(1)求數(shù)列{an}的通項公式;
(2)設由bn=(c≠0)構成的新數(shù)列為{bn},求證:當且僅當c=-時,數(shù)列{bn}是等差數(shù)列;
(3)對于(2)中的等差數(shù)列{bn},設cn=(n∈N*),數(shù)列{cn}的前n項和為Tn,現(xiàn)有數(shù)列{f(n)},f(n)=Tn•(an+3-)•0.9n(n∈N*),是否存在n∈N*,使f(n)≤f(n)對一切n∈N*都成立?若存在,求出n的值,若不存在,請說明理由.

查看答案和解析>>

難點磁場

6ec8aac122bd4f6e

殲滅難點訓練

一、1.解析:6ec8aac122bd4f6e,

6ec8aac122bd4f6e

答案:A

2.解析:6ec8aac122bd4f6e

答案:C

二、3.解析:6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

4.解析:原式=6ec8aac122bd4f6e

6ec8aac122bd4f6e

a?b=86ec8aac122bd4f6e

答案:86ec8aac122bd4f6e

三、5.解:(1)由{an+16ec8aac122bd4f6ean}是公比為6ec8aac122bd4f6e的等比數(shù)列,且a1=6ec8aac122bd4f6e,a2=6ec8aac122bd4f6e,

an+16ec8aac122bd4f6ean=(a26ec8aac122bd4f6ea1)(6ec8aac122bd4f6e)n-1=(6ec8aac122bd4f6e6ec8aac122bd4f6e×6ec8aac122bd4f6e)(6ec8aac122bd4f6e)n-1=6ec8aac122bd4f6e,

an+1=6ec8aac122bd4f6ean+6ec8aac122bd4f6e                                               ①

又由數(shù)列{lg(an+16ec8aac122bd4f6ean)}是公差為-1的等差數(shù)列,且首項lg(a26ec8aac122bd4f6ea1)

=lg(6ec8aac122bd4f6e6ec8aac122bd4f6e×6ec8aac122bd4f6e)=-2,

∴其通項lg(an+16ec8aac122bd4f6ean)=-2+(n-1)(-1)=-(n+1),

an+16ec8aac122bd4f6ean=10(n+1),即an+1=6ec8aac122bd4f6ean+10(n+1)                                                                                                

①②聯(lián)立解得an=6ec8aac122bd4f6e[(6ec8aac122bd4f6e)n+1-(6ec8aac122bd4f6e)n+1

(2)Sn=6ec8aac122bd4f6e

6ec8aac122bd4f6e

6.解:由于6ec8aac122bd4f6e=1,可知,f(2a)=0                                                                      ①

同理f(4a)=0                                                                                                            ②

由①②可知f(x)必含有(x-2a)與(x-4a)的因式,由于f(x)是x的三次多項式,故可設f(x)=A(x-2a)(x-4a)(xC),這里AC均為待定的常數(shù),

6ec8aac122bd4f6e

6ec8aac122bd4f6e,即4a2A-2aCA=-1                                                         ③

同理,由于6ec8aac122bd4f6e=1,得A(4a-2a)(4aC)=1,即8a2A-2aCA=1                        ④

由③④得C=3a,A=6ec8aac122bd4f6e,因而f(x)= 6ec8aac122bd4f6e (x-2a)(x-4a)(x-3a),

6ec8aac122bd4f6e

6ec8aac122bd4f6e

由數(shù)列{an}、{bn}都是由正數(shù)組成的等比數(shù)列,知p>0,q>0

6ec8aac122bd4f6e

p<1時,q<1, 6ec8aac122bd4f6e

6ec8aac122bd4f6e

8.解:(1)an=(n-1)d,bn=26ec8aac122bd4f6e=2(n1)d?

Sn=b1+b2+b3+…+bn=20+2d+22d+…+2(n1)d?

d≠0,2d≠1,∴Sn=6ec8aac122bd4f6e

Tn=6ec8aac122bd4f6e

(2)當d>0時,2d>1

6ec8aac122bd4f6e

 

 

 


同步練習冊答案