已知等差數(shù)列{an}中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1=a4=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)由bn=
Sn
n+c
(c≠0)構(gòu)成的新數(shù)列為{bn},求證:當(dāng)且僅當(dāng)c=-
1
2
時(shí),數(shù)列{bn}是等差數(shù)列;
(3)對(duì)于(2)中的等差數(shù)列{bn},設(shè)cn=
8
(an+7)•bn
(n∈N*),數(shù)列{cn}的前n項(xiàng)和為T(mén)n,現(xiàn)有數(shù)列{f(n)},f(n)=Tn•(an+3-
8
bn
)•0.9n(n∈N*),是否存在n0∈N*,使f(n)≤f(n0)對(duì)一切n∈N*都成立?若存在,求出n0的值,若不存在,請(qǐng)說(shuō)明理由.
(1)∵等差數(shù)列{an}中,公差d>0,
a2a3=45
a1+a4=14
?
a2a3=45
a2+a3=14
?
a2=5
a3=9
?d=4?an=4n-3
(3分)
(3分)
(2)Sn=
n(1+4n-3)
2
=n(2n-1)
,bn=
Sn
n+c
=
n(2n-1)
n+c
,
由2b2=b1+b3
12
2+c
=
1
1+c
+
15
3+c
,化簡(jiǎn)得2c2+c=0,c≠0,
c=-
1
2

反之,令 c=-
1
2
,即得bn=2n,顯然數(shù)列{bn}為等差數(shù)列,
∴當(dāng)且僅當(dāng) c=-
1
2
時(shí),數(shù)列{bn}為等差數(shù)列.(9分)
(3)cn=
8
(an+7)•bn
=
1
(n+1)n
=
1
n
-
1
n+1
,∴Tn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

f(n)=Tn•(an+3-
8
bn
)•0.9n=
n
n+1
•(4n-
4
n
) •0.9n
=4(n-1)•0.9n(11分)
∵f(n+1)-f(n)=4•0.9n[0.9n-(n-1)]=4•0.9n[1-0.1n]n∈N+
∴當(dāng)n<10時(shí),f(n+1)>f(n),當(dāng)n=10時(shí),f(n+1)=f(n),當(dāng)n>10時(shí),f(n+1)<f(n),
f(n)max=f(10)=f(11),(13分)
∴存在n0=10或11,使f(n)≤f(n0)對(duì)一切n∈N*都成立.(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫(xiě)出解答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案