題目列表(包括答案和解析)
已知函數(shù)
(1) 若函數(shù)在上單調(diào),求的值;
(2)若函數(shù)在區(qū)間上的最大值是,求的取值范圍.
【解析】第一問,
, 、
第二問中,
由(1)知: 當時, 上單調(diào)遞增 滿足條件當時,
解: (1) ……3分
, …………….7分
(2)
由(1)知: 當時, 上單調(diào)遞增
滿足條件…………..10分
當時, 且
…………13分
綜上所述:
設函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當0<a<2時,求函數(shù)在區(qū)間上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到..
令,則,所以或,得到結論。
第二問中, ().
.
因為0<a<2,所以,.令 可得.
對參數(shù)討論的得到最值。
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
(I)定義域為. ………………………1分
.
令,則,所以或. ……………………3分
因為定義域為,所以.
令,則,所以.
因為定義域為,所以. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為. ………………………7分
(II) ().
.
因為0<a<2,所以,.令 可得.…………9分
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
①當,即時,
在區(qū)間上,在上為減函數(shù),在上為增函數(shù).
所以. ………………………10分
②當,即時,在區(qū)間上為減函數(shù).
所以.
綜上所述,當時,;
當時,
(本小題16分)
探究函數(shù)的最大值,并確定取得最大值時的值.列表如下:
| … | -0.5 | -1 | -1.5 | -1.7 | -1.9 | -2 | -2.1 | -2.2 | -2.3 | -3 | … |
| … | -8.5 | -5 | -4.17 | -4.05 | -4.005 | -4 | -4.005 | -4.02 | -4.04 | -4.3 | … |
請觀察表中值隨值變化的特點,完成以下的問題.
(1)函數(shù)在區(qū)間 上為單調(diào)遞增函數(shù).當 時, .
(2)證明:函數(shù)在區(qū)間為單調(diào)遞減函數(shù).
(3)思考:函數(shù)有最大值或最小值嗎?如有,是多少?此時為何值?(直接回答結果,不需證明).
(本小題滿分16分)
探究函數(shù)的最大值,并確定取得最大值時的值.列表如下:
| … | -0.5 | -1 | -1.5 | -1.7 | -1.9 | -2 | -2.1 | -2.2 | -2.3 | -3 | … |
| … | -8.5 | -5 | -4.17 | -4.05 | -4.005 | -4 | -4.005 | -4.02 | -4.04 | -4.3 | … |
請觀察表中值隨值變化的特點,完成以下的問題.
函數(shù)在區(qū)間上為單調(diào)減函數(shù);
(1)函數(shù)在區(qū)間 上為單調(diào)遞增函數(shù).當 時, .
(2)證明:函數(shù)在區(qū)間為單調(diào)遞減函數(shù).
(3)思考:函數(shù)有最大值或最小值嗎?如有,是多少?此時為何值?(直接回答結果,不需證明).
(本小題滿分16分)
探究函數(shù)的最大值,并確定取得最大值時的值.列表如下:
| … | -0.5 | -1 | -1.5 | -1.7 | -1.9 | -2 | -2.1 | -2.2 | -2.3 | -3 | … |
| … | -8.5 | -5 | -4.17 | -4.05 | -4.005 | -4 | -4.005 | -4.02 | -4.04 | -4.3 | … |
請觀察表中值隨值變化的特點,完成以下的問題.
函數(shù)在區(qū)間上為單調(diào)減函數(shù);
(1)函數(shù)在區(qū)間 上為單調(diào)遞增函數(shù).當 時, .
(2)證明:函數(shù)在區(qū)間為單調(diào)遞減函數(shù).
(3)思考:函數(shù)有最大值或最小值嗎?如有,是多少?此時為何值?(直接回答結果,不需證明).
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com