19.某地區(qū)發(fā)生流行性病毒感染.居住在該地區(qū)的居民必須服用一種藥物預(yù)防.規(guī)定每人每天早晚八時(shí)各服用一片.現(xiàn)知該藥片每片含藥量220 毫克. 若人的腎臟每12 小時(shí)從體內(nèi)濾出這種藥的60%.在體內(nèi)的殘留量超過386 毫克.就將產(chǎn)生副作用. (1)某人上午八時(shí)第一次服藥.問到第二天上午八時(shí)服完藥時(shí).這種藥在人體內(nèi)還殘留多少? (2)長期服用這種藥的人會不會產(chǎn)生副作用? 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

某地區(qū)舉辦科技創(chuàng)新大賽,有50件科技作品參賽,大賽組委會對這50件作品分別

從“創(chuàng)新性”和“實(shí)用性”兩項(xiàng)進(jìn)行評分,每項(xiàng)評分均按等級采用5分制,若設(shè)“創(chuàng)新性”得分為,“實(shí)用性”得分為,統(tǒng)計(jì)結(jié)果如下表:

作品數(shù)量     

實(shí)用性

1分

2分

3分

4分

5分

創(chuàng)

1分

1

3

1

0

1

2分

1

0

7

5

1

3分

2

1

0

9

3

4分

1

6

0

5分

0

0

1

1

3

(Ⅰ)求“創(chuàng)新性為4分且實(shí)用性為3分”的概率;

(Ⅱ)若“實(shí)用性”得分的數(shù)學(xué)期望為,求、的值.

查看答案和解析>>

(本小題滿分13分)

某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

3月1日

3月2日

3月3日

3月4日

3月5日

溫差xoC)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

(I)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均小于25”的概率;

(II)請根據(jù)3月2日至3月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(III)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(II)所得的線性回歸方程是否可靠?

(參考公式:回歸直線方程式,其中

 

查看答案和解析>>

(本小題滿分13分)

某設(shè)計(jì)部門承接一產(chǎn)品包裝盒的設(shè)計(jì)(如圖所示),客戶除了要求、邊的長分別為外,還特別要求包裝盒必需滿足:①平面平面;②平面與平面所成的二面角不小于;③包裝盒的體積盡可能大。

若設(shè)計(jì)部門設(shè)計(jì)出的樣品滿足:均為直角且,矩形的一邊長為,請你判斷該包裝盒的設(shè)計(jì)是否能符合客戶的要求?說明理由.

 

 

查看答案和解析>>

(本小題滿分13分)

某商場為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動.活動規(guī)則如下:消費(fèi)每滿100元可以轉(zhuǎn)動如圖所示的圓盤一次,其中O為圓心,且標(biāo)有20元、10元、0元的三部分區(qū)域面積相等,假定指針停在任一位置都是等可能的.當(dāng)指針停在某區(qū)域時(shí),返相應(yīng)金額的優(yōu)惠券。(例如:某顧客消費(fèi)了218元,第一次轉(zhuǎn)動獲得了20元,第二次獲得了10元,則其共獲得了30元優(yōu)惠券。)顧客甲和乙都到商場進(jìn)行了消費(fèi),并按照規(guī)則參與了活動.

   (I)若顧客甲消費(fèi)了128元,求他獲得優(yōu)惠券面額大于0元的概率?

   (II)若顧客乙消費(fèi)了280元,求他總共獲得優(yōu)惠券金額不低于20元的概率?

 

查看答案和解析>>

(本小題滿分13分)某企業(yè)的產(chǎn)品以往專銷歐美市場,在全球金融風(fēng)暴的影響下,歐美市場的銷量受到嚴(yán)重影響,該企業(yè)在政府的大力扶助下積極開拓國內(nèi)市場,并基本形成了市場規(guī)模;自2009年9月以來的第n個(gè)月(2009年9月為第一個(gè)月)產(chǎn)品的內(nèi)銷量、出口量和銷售總量(銷售總量=內(nèi)銷量與出口量的和)分別為bn、cn和an(單位:萬件),依據(jù)銷售統(tǒng)計(jì)數(shù)據(jù)發(fā)現(xiàn)形成如下營銷趨勢:bn + 1 =" a" an,cn + 1 =" an" + b an2 (其中a、b為常數(shù)),已知a1 = 1萬件,a2 = 1.5萬件,a3 = 1.875萬件.
(1)求a,b的值,并寫出an + 1與an滿足的關(guān)系式;
(2)試用你所學(xué)的數(shù)學(xué)知識論證銷售總量逐月遞增且控制在2萬件內(nèi);
(3)試求從2009年9月份以來的第n個(gè)月的銷售總量an關(guān)于n的表達(dá)式.

查看答案和解析>>

 

一、選擇題(每小題5 分,共40 分)

DCABD  ABC

二、填空題(每小題5 分,共35分)

9.     10.     11.91    12.②④

13.     14.(i)(2分)    (ii)(3分)

15.(i)(3分);    (ii) (2分)

<s id="8pmsu"><source id="8pmsu"><abbr id="8pmsu"></abbr></source></s>

  • <style id="8pmsu"><fieldset id="8pmsu"><video id="8pmsu"></video></fieldset></style>

    20090401

    ,2 分

    8,3 分

    解得;……………………4分分

    (2)

     ………………6分

    …………8分

    由余弦定理得

     ……………………10分

     …………………………12分

    17.解:(1)= 1 表示經(jīng)過操作以后A 袋中只有一個(gè)紅球,有兩種情形出現(xiàn)

    ①先從A 中取出1 紅和1 白,再從B 中取一白到A 中

    ②先從A 中取出2 紅球,再從B 中取一紅球到A 中

    …………………………(5分)

    (2)同(1)中計(jì)算方法可知:

    于是的概率分別列

    0

    1

    2

    3

    P

     

    E=……………………12分

    18.解:(1)AB//平面DEF. 在△ABC 中,

    ∵E、F分別是AC、BC 上的點(diǎn),且滿足

    ∴AB//EF.

    <dfn id="8pmsu"><dd id="8pmsu"></dd></dfn>

    ∴AB//平面DEF. …………3 分

    (2)過D點(diǎn)作DG⊥AC 于G,連結(jié)BG,

    ∵AD⊥CD, BD⊥CD,

    ∴∠ADB 是二面角A―CD―B 的平面角.

    ∴∠ADB = 90°, 即BD⊥AD.

    ∴BD⊥平面ADC.

    ∴BD⊥AC.

    ∴AC⊥平面BGD.

    ∴BG⊥AC .

    ∴∠BGD 是二面角B―AC―D 的平面角. 5 分

    在Rt△ADC 中,AD = a,DC = a,AC = 2a

    在Rt

    即二面角B―AC―D的大小為……………………8分

    (2)∵AB//EF,

    ∴∠DEF(或其補(bǔ)角)是異面直線AB 與DE 所成的角. ………………9 分

    ∵AB =,

    ∴EF=  ak .

    又DC = a,CE = kCA = 2ak,

    ∴DF= DE =

    ………………4分

    ∴cos∠DEF=………………11分

    …………………………12分

    19.解:(1)依題意建立數(shù)學(xué)模型,設(shè)第n 次服藥后,藥在體內(nèi)的殘留量為an(毫克)

    a1 = 220,a2 =220×1.4 ……………………2 分

    a4 = 220 + a2 (1-0.6) = 343.2 ……………………5 分

    (2)由an = 220 + 0.4an―1 (n≥2 ),

    可得

    所以()是一個(gè)等比數(shù)列,

    不會產(chǎn)生副作用……………………13分

    20.解:(1)由條件知:

    ……………………2分

    b=1,

    ∴橢圓C的方程為:……………………4分

    (2)依條件有:………………5分

    …………7分

    ,

    ………………7分

    …………………………9分

    由弦長公式得

        得

    =

     …………………………13分

    21.解:(1)當(dāng)

    上單調(diào)遞增,

    ……………………5分

    (2)(1),

    需求一個(gè),使(1)成立,只要求出

    的最小值,

    滿足

    上↓

    ↑,

    只需證明內(nèi)成立即可,

    為增函數(shù)

    ,故存在與a有關(guān)的正常數(shù)使(1)成立。13分

     


    同步練習(xí)冊答案

    1. <center id="8pmsu"><samp id="8pmsu"><s id="8pmsu"></s></samp></center>