(2)試求實數(shù)k的最大值.使得對任意恒成立, 查看更多

 

題目列表(包括答案和解析)

已知定義在上的兩個函數(shù)的圖象在點處的切線的斜率為
(1)求f(x)的解析式;
(2)試求實數(shù)k的最大值,使得對任意恒成立;
(3)若,求證:

查看答案和解析>>

已知實數(shù)x,y滿足
x+3y-3n-1≤0
2x-y+n-2≤0
,其中n∈N*,目標函數(shù)z=x+y的最大值記為an,又數(shù)列{bn}滿足:nb1+(n-1)b2+…+2bn-1+bn=(
9
10
n-1+(
9
10
n-2+…+
9
10
+1
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=-an•bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對于{cn}中任意一項cn,都有cn≤ck成立?證明你的結(jié)論.

查看答案和解析>>

已知定義在(,3)上的兩個函數(shù),y=f(x)的圖象在點A(,f())處的切線的斜率為,
(1)求f(x)的解析式;
(2)試求實數(shù)k的最大值,使得對任意x∈(,3),不等式f(x)≥kg(x)恒成立;
(3)若x1,x2,x3∈(,3)且3x1x2x3=2(x1x2+x2x3+x3x1),求證:

查看答案和解析>>



(本小題滿分14分)
已知定義在上的兩個函數(shù)圖象在點處的切線的斜率為
(1)求的解析式;
(2)試求實數(shù)k的最大值,使得對任意恒成立;
(3)若,
求證:

查看答案和解析>>

(本小題滿分12分)已知定義在上的兩個函數(shù)的圖象在點處的切線傾斜角的大小為(1)求的解析式;(2)試求實數(shù)k的最大值,使得對任意恒成立;(3)若

,求證:

查看答案和解析>>

 

一、

DACCA  BDB

二、

9.16    10.2009      11.      12.     

13.    14.3        15.②③

三、

16.解:(1)由余弦定理得:

是以角C為直角的直角三角形.……………………6分

(2)

………………①

………………②

②÷①得

……………………12分

17.解:(1)因為……………………………………(2分)

       ……………………………………………………(4分)

      

所以線路信息通暢的概率為。………………………(6分)

   (2)的所有可能取值為4,5,6,7,8。

      

       ……………………………………………………………(9分)

       ∴的分布列為

4

5

6

7

8

P

       …………………………………………………………………………………………(10分)

∴E=4×+5×+6×+7×+8×=6!12分)

18.解:解法一:(1)證明:連結(jié)OC,

ABD為等邊三角形,O為BD的中點,∴AO

垂直BD!1分)

       ∴ AO=CO=!2分)

       在AOC中,AC=,∴AO2+CO2=AC2,

∴∠AOC=900,即AO⊥OC。

       ∴BDOC=O,∴AO⊥平面BCD!3分)

   (2)過O作OE垂直BC于E,連結(jié)AE,

    ∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。

    ∴AE⊥BC。

    ∠AEO為二面角A―BC―D的平面角!7分)

       在RtAEO中,AO=,OE=,

,

       ∴∠AEO=arctan2。

       二面角A―BC―D的大小為arctan2。

       (3)設(shè)點O到面ACD的距離為∵VO-ACD=VA-OCD,

。

       在ACD中,AD=CD=2,AC=,

。

    1. 。

             ∴點O到平面ACD的距離為!12分)

      解法二:(1)同解法一。

             (2)以O(shè)為原點,如圖建立空間直角坐標系,

             則O(0,0,0),A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0)

             ∵AO⊥平面DCD,

             ∴平面BCD的法向量=(0,0,)!5分)

      <bdo id="ridxv"></bdo>
      <s id="ridxv"><fieldset id="ridxv"><dl id="ridxv"></dl></fieldset></s>
      <form id="ridxv"><font id="ridxv"></font></form>

             ,

             由。設(shè)夾角為

             則。

             ∴二面角A―BC―D的大小為arccos。…………………………………………(8分)

         (3)解:設(shè)平面ACD的法向量為

      。………………………………(11分)

      設(shè)夾角為,則

      設(shè)O到平面ACD的距離為,

      ,

      ∴O到平面ACD的距離為!12分)19.解:(1).

      …共線,該直線過點P1(a,a),

      斜率為……………………3分

      時,An是一個三角形與一個梯形面積之和(如上圖所示),梯形面積是

      于是

      …………………………7分

      (2)結(jié)合圖象,當

      ,……………………10分

      而當

      ,

      故當1<a>2時,存在正整數(shù)n,使得……………………13分

      20.解:(1)

      設(shè)橢圓C的標準方程為,

      為正三角形,

      a=2b,結(jié)合

      ∴所求為……………………2分

      (2)設(shè)P(x,y)M(),N(),

      直線l的方程為得,

      ……………………4分

      ………………6分

      且滿足上述方程,

      ………………7分

      (3)由(2)得, 

      …………………………9分

      ……………………10分

      設(shè)

      面積的最大值為…………………………13分

      21.解:(1)由

      即可求得……………………3分

      (2)當>0,

      不等式…(5分)

       

      由于

      ……………………7分

      于是由;………………9分

      (3)由(2)知,

      在上式中分別令x=再三式作和即得

      所以有……………………13分

       

       


      同步練習(xí)冊答案