11.頂點(diǎn)在坐標(biāo)原點(diǎn).焦點(diǎn)在直線上的拋物線的標(biāo)準(zhǔn)方程是 . 查看更多

 

題目列表(包括答案和解析)

一頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的拋物線截直線2x-y-4=0所得的弦長(zhǎng)為3
5
,求拋物線的方程.

查看答案和解析>>

一頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的拋物線截直線2x-y-4=0所得的弦長(zhǎng)為3,求拋物線的方程.

查看答案和解析>>

已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長(zhǎng)為
15
,求此拋物線方程.

查看答案和解析>>

已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸正半軸的拋物線上有一點(diǎn)A(,m),A點(diǎn)到拋物線焦點(diǎn)的距離為1.
(1)求該拋物線的方程;
(2)設(shè)M(x0,y0)為拋物線上的一個(gè)定點(diǎn),過(guò)M作拋物線的兩條互相垂直的弦MP,MQ,求證:PQ恒過(guò)定點(diǎn)(x0+2,-y0).

查看答案和解析>>

已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸正半軸的拋物線上有一點(diǎn)A(,m),A點(diǎn)到拋物線焦點(diǎn)的距離為1.
(1)求該拋物線的方程;
(2)設(shè)M(x0,y0)為拋物線上的一個(gè)定點(diǎn),過(guò)M作拋物線的兩條互相垂直的弦MP,MQ,求證:PQ恒過(guò)定點(diǎn)(x0+2,-y0).

查看答案和解析>>

 

一、

DACCA  BDB

二、

9.16    10.2009      11.      12.     

13.    14.3        15.②③

三、

16.解:(1)由余弦定理得:

是以角C為直角的直角三角形.……………………6分

(2)

………………①

………………②

②÷①得,

……………………12分

17.解:(1)因?yàn)?sub>……………………………………(2分)

       ……………………………………………………(4分)

      

所以線路信息通暢的概率為。………………………(6分)

   (2)的所有可能取值為4,5,6,7,8。

      

       ……………………………………………………………(9分)

       ∴的分布列為

4

5

6

7

8

P

       …………………………………………………………………………………………(10分)

∴E=4×+5×+6×+7×+8×=6。……………………(12分)

18.解:解法一:(1)證明:連結(jié)OC,

ABD為等邊三角形,O為BD的中點(diǎn),∴AO

垂直BD!1分)

       ∴ AO=CO=!2分)

       在AOC中,AC=,∴AO2+CO2=AC2,

∴∠AOC=900,即AO⊥OC。

       ∴BDOC=O,∴AO⊥平面BCD!3分)

   (2)過(guò)O作OE垂直BC于E,連結(jié)AE,

    ∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。

    ∴AE⊥BC。

    ∠AEO為二面角A―BC―D的平面角!7分)

       在RtAEO中,AO=,OE=

,

       ∴∠AEO=arctan2。

       二面角A―BC―D的大小為arctan2。

       (3)設(shè)點(diǎn)O到面ACD的距離為∵VO-ACD=VA-OCD

。

       在ACD中,AD=CD=2,AC=,

。

。

       ∴點(diǎn)O到平面ACD的距離為!12分)

解法二:(1)同解法一。

       (2)以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,

       則O(0,0,0),A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0)

       ∵AO⊥平面DCD,

       ∴平面BCD的法向量=(0,0,)!5分)

<address id="yk6rr"></address>
<bdo id="yk6rr"><ul id="yk6rr"></ul></bdo>
    • <address id="yk6rr"><ul id="yk6rr"></ul></address>

               ,

               由。設(shè)夾角為,

               則

               ∴二面角A―BC―D的大小為arccos!8分)

           (3)解:設(shè)平面ACD的法向量為

        !11分)

        設(shè)夾角為,則

        設(shè)O到平面ACD的距離為,

        ,

        ∴O到平面ACD的距離為!12分)19.解:(1).

        …共線,該直線過(guò)點(diǎn)P1(a,a),

        斜率為……………………3分

        當(dāng)時(shí),An是一個(gè)三角形與一個(gè)梯形面積之和(如上圖所示),梯形面積是

        于是

        …………………………7分

        (2)結(jié)合圖象,當(dāng)

        ,……………………10分

        而當(dāng)

        ,

        故當(dāng)1<a>2時(shí),存在正整數(shù)n,使得……………………13分

        20.解:(1)

        設(shè)橢圓C的標(biāo)準(zhǔn)方程為,

        為正三角形,

        a=2b,結(jié)合

        ∴所求為……………………2分

        (2)設(shè)P(x,y)M(),N(),

        直線l的方程為得,

        ……………………4分

        ………………6分

        且滿足上述方程,

        ………………7分

        (3)由(2)得, 

        …………………………9分

        ……………………10分

        設(shè)

        面積的最大值為…………………………13分

        21.解:(1)由

        即可求得……………………3分

        (2)當(dāng)>0,

        不等式…(5分)

         

        由于

        ……………………7分

        當(dāng)

        當(dāng)

        當(dāng)

        ,

        于是由;………………9分

        (3)由(2)知,

        在上式中分別令x=再三式作和即得

        所以有……………………13分

         

         


        同步練習(xí)冊(cè)答案
        <bdo id="yk6rr"></bdo>