B.將函數(shù)的圖象向左平移1個(gè)單位可得到函數(shù)的圖象 查看更多

 

題目列表(包括答案和解析)

6、將y=2x的圖象____________再作關(guān)于直線(xiàn)y=x對(duì)稱(chēng)的圖象,可得到函數(shù)y=log2(x+1)的圖象(  )

查看答案和解析>>

設(shè)函數(shù)f(x)的圖象與函數(shù)y=2x的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng),則只需將函數(shù)y=log2(x+1)的圖象作如下變換就能得到函數(shù)f(x)的圖象(  )

查看答案和解析>>

將函數(shù)y=f(x)的圖象沿x軸向左平移一個(gè)單位,再作關(guān)于y軸對(duì)稱(chēng)的圖形,得到y(tǒng)=lgx的圖象,則( 。

查看答案和解析>>

已知函數(shù)f(x)=2sinx,將函數(shù)y=f(x)的圖象向左平行移動(dòng)
π
6
個(gè)單位長(zhǎng)度,再將所得函數(shù)圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
2
(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,則g(x)在[0,
π
3
]
上的取值范圍為( 。
A、[1,2]
B、[
1
2
,1]
C、[
3
,2]
D、[1,
3
]

查看答案和解析>>

將函數(shù)y=sinx的圖象C按順序作以下兩種變換:(1)向左平移
π
3
個(gè)單位長(zhǎng)度;(2)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變.所得到的曲線(xiàn)C/對(duì)應(yīng)的函數(shù)解析式是(  )
A、y=sin(2x-
π
3
)
B、y=sin(
x
2
-
π
3
)
C、y=sin(2x+
π
3
)
D、y=sin(
x
2
+
π
3
)

查看答案和解析>>

一、選擇題

1、B(A)   2、C        3、A(C)       4、D         5、D          6、C(D)  

7、B         8、B        9、C          10、B        11、B        12、A(C)

二、填空題

13、6          14、           15、31           16、

三、解答題

17、解:⑴由

       由 

        

       ∴函數(shù)的最小正周期T= …………………6分

       ⑵由

       ∴fx)的單調(diào)遞減區(qū)間是

       ⑶,∴奇函數(shù)的圖象左移 即得到的圖象,

故函數(shù)的圖象右移后對(duì)應(yīng)的函數(shù)成為奇函數(shù).…………………12分

18、(文)解:(1),又. ∴,.

(2)至少需要3秒鐘可同時(shí)到達(dá)點(diǎn).

到達(dá)點(diǎn)的概率. 到達(dá)點(diǎn)的概率.

     故所求的概率.

(理)解:(Ⅰ)的概率分布為

1.2

1.18

1.17

由題設(shè)得,即的概率分布為

0

1

2

的概率分布為

1.3

1.25

0.2

所以的數(shù)學(xué)期望

(Ⅱ)由

,∴

 

19、解:(1)取中點(diǎn),連結(jié),∵的中點(diǎn),的中點(diǎn).

  所以,所以………………………… 2分

平面,所以平面………………………………………… 4分

(2)分別在兩底面內(nèi)作,連結(jié),易得,以為原點(diǎn),軸,軸,軸建立直角坐標(biāo)系,

設(shè),則……………………………………………………… 5分

  .

易求平面的法向量為…………………………………………… 7分

設(shè)平面的法向量為

,由…………… 9分

  ∴…………… 11分

由題知 ∴

所以在上存在點(diǎn),當(dāng)時(shí)是直二面角.…………… 12分

20、解:(1)由,得,兩式相減,得,∴,∵是常數(shù),且,,故

為不為0的常數(shù),∴是等比數(shù)列.

(2)由,且時(shí),,得

,∴是以1為首項(xiàng),為公差的等差數(shù)列,

,故.

(3)由已知,∴

相減得:,∴,

,遞增,∴,對(duì)均成立,∴∴,又,∴最大值為7.

21、(文)解:(Ⅰ)因?yàn)?sub>

                      

             又  

             因此    

             解方程組得 

         (Ⅱ)因?yàn)?nbsp;    

             所以     

             令      

             因?yàn)?nbsp;   

                     

             所以     在(-2,0)和(1,+)上是單調(diào)遞增的;

                           在(-,-2)和(0,1)上是單調(diào)遞減的.

         (Ⅲ)由(Ⅰ)可知         

            

 

(理)(1)證:令,令時(shí)

            時(shí),.  ∴

             ∴ 即.

  (2)∵是R上的奇函數(shù)  ∴  ∴

       ∴  ∴  故.

       故討論方程的根的個(gè)數(shù).

       即的根的個(gè)數(shù).

       令.注意,方程根的個(gè)數(shù)即交點(diǎn)個(gè)數(shù).

        對(duì), ,

        令, 得

         當(dāng)時(shí),; 當(dāng)時(shí),.  ∴,

         當(dāng)時(shí),;   當(dāng)時(shí),, 但此時(shí)

,此時(shí)以軸為漸近線(xiàn)。

       ①當(dāng)時(shí),方程無(wú)根;

②當(dāng)時(shí),方程只有一個(gè)根.

③當(dāng)時(shí),方程有兩個(gè)根.

 (3)由(1)知,   令,

      ∴,于是,

      ∴

         .

22、(文)22.解:(1)在中,

.  (小于的常數(shù))

故動(dòng)點(diǎn)的軌跡是以,為焦點(diǎn),實(shí)軸長(zhǎng)的雙曲線(xiàn).方程為

(2)方法一:在中,設(shè),

假設(shè)為等腰直角三角形,則

由②與③得:,

由⑤得:,

,

故存在滿(mǎn)足題設(shè)條件.

方法二:(1)設(shè)為等腰直角三角形,依題設(shè)可得:

所以,

.①

,可設(shè),

,

.②

由①②得.③

根據(jù)雙曲線(xiàn)定義可得,

平方得:.④

由③④消去可解得,

故存在滿(mǎn)足題設(shè)條件.

 

 

 

 

(理)解:(1) ,

,

    于是,所求“果圓”方程為

    ,.                    

(2)由題意,得  ,即

         ,,得.  

     又.  .                                             

(3)設(shè)“果圓”的方程為,

    記平行弦的斜率為

當(dāng)時(shí),直線(xiàn)與半橢圓的交點(diǎn)是

,與半橢圓的交點(diǎn)是

 的中點(diǎn)滿(mǎn)足  得 .  

     , 

    綜上所述,當(dāng)時(shí),“果圓”平行弦的中點(diǎn)軌跡總是落在某個(gè)橢圓上. 

    當(dāng)時(shí),以為斜率過(guò)的直線(xiàn)與半橢圓的交點(diǎn)是.  

由此,在直線(xiàn)右側(cè),以為斜率的平行弦的中點(diǎn)軌跡在直線(xiàn)上,即不在某一橢圓上.   當(dāng)時(shí),可類(lèi)似討論得到平行弦中點(diǎn)軌跡不都在某一橢圓上.

 


同步練習(xí)冊(cè)答案