由..得.取n1=.又平面BEC的一個法向量為n2=. 查看更多

 

題目列表(包括答案和解析)

已知c>0.設(shè)

命題P:cn=0.

命題Q:當(dāng)x∈[,2]時,函數(shù)f(x)=x+恒成立.

    如果P或Q為真命題,P且Q為假命題,求c的取值范圍.

    分析:由cn=0得,0<c<1.∴P:0<c<1,

    由x∈[,2]時,函數(shù)f(x)=x+恒成立,想到<f(x)min,故需求f(x)在[,2]上的最小值.

查看答案和解析>>

已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項和.

(1)求數(shù)列的通項公式和數(shù)列的前n項和;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

第二問,①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

(2)①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則,

即.

,可得,即,

,且m>1,所以m=2,此時n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時,數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

已知集合M={1,-2,3},N={-4,5,6,-7},從兩個集合中各取一個元素,作為點的坐標(biāo),則在直角坐標(biāo)系中,第一、二象限內(nèi)不同點的個數(shù)有(    )

A.18              B.16             C.14              D.10

查看答案和解析>>

06年四川卷理)設(shè)離散型隨機變量ξ可能取的值為1,2,3,4.P(ξ=k)=ak+b(k=1,2,3,4),又ξ的數(shù)學(xué)期望Eξ=3,則a+b=______________。

查看答案和解析>>

(文) 已知實數(shù)A = +(1≤m≤2).則實數(shù)A的取值范圍是 ( )

A.[0,]  B.[1,]  C.[,1]  D.[0,1]

查看答案和解析>>


同步練習(xí)冊答案