1.點(2.3)在一次函數(shù)y=2x-1的 ,x=2.y=3是方程2x-y=1的 . 查看更多

 

題目列表(包括答案和解析)

點(2,3)在一次函數(shù)y=2x-1的(    );是方程2x-y=1的(    )。

查看答案和解析>>

我們知道,在數(shù)軸上,x=1表示一個點,而在平面直角坐標系中,x=1表示一條直線;我們還知道,以二元一次方程2x-y+1=0的所有解為坐標的點組成的圖形就是一次函數(shù)y=2x+1的圖象,它也是一條直線,如圖1.
觀察圖1可以得出:直線x=1與直線y=2x+1的交點P的坐標(1,3)就是
方程組
x=1
2x-y+1=0
的解,所以這個方程組的解為
x=1
y=3

在直角坐標系中,x≤1表示一個平面區(qū)域,即直線x=1以及它左側(cè)的部分,如圖②;y≤2x+1也表示一個平面區(qū)域,即直線y=2x+1以及它下方的部分,如圖3;
那么,
x≤1
y≤2x+1
y>0
所圍成的區(qū)域就是圖4中的陰影部分.
精英家教網(wǎng)
回答下列問題:
(1)在下面的直角坐標系中,用作圖象的方法求出方程組
x=2
y=-
3
2
x+3
的解;
(2)在右面的直角坐標系中用陰影表示,
x≤2
y≤-x2+2x+3
y≥-
3
2
x+3
所圍成的區(qū)域.

查看答案和解析>>

如圖1,二次函數(shù)y=ax2+bx+c(a≠0)的圖像與x軸交于點A、點B,與y軸交于點C,且A、B兩點的坐標分別是(4,0)、(0,-2),tan∠BCO=(1)求拋物線解析式;(2)點M為拋物線上一點,若以MB為直徑的圓與直線BC相切于點B,求點M的坐標;(3) 如圖2,若點P是拋物線上的動點,點Q是直線y=-x的動點,是否存在以點P、Q、C、O為頂點且以OC為一邊的四邊形是直角梯形;如果存在,請求出點P的坐標,如果不存在,請說明理由.

【解析】(1)利用A、B兩點的坐標和tan∠BCO=求拋物線解析式

(2)設點m(x,y),則由以MB為直徑的圓與直線BC相切于點B,說明了點B為直徑的一個端點,另外,BC直線方程為y=2x+4,利用BM的中點就是圓心坐標,BM垂直于CB,因此聯(lián)立方程組可得M的坐標

(3)假設存在以點P、Q、C、O為頂點且以OC為一邊的四邊形是直角梯形

則有幾種情況的一種直角為C,直角為P,直角為O,直角為Q的情況,那么分情況討論求解,利用一組對邊平行,一個角為直角,進行求解

 

查看答案和解析>>

如圖1,二次函數(shù)y=ax2+bx+c(a≠0)的圖像與x軸交于點A、點B,與y軸交于點C,且A、B兩點的坐標分別是(4,0)、(0,-2),tan∠BCO=(1)求拋物線解析式;(2)點M為拋物線上一點,若以MB為直徑的圓與直線BC相切于點B,求點M的坐標;(3) 如圖2,若點P是拋物線上的動點,點Q是直線y=-x的動點,是否存在以點P、Q、C、O為頂點且以OC為一邊的四邊形是直角梯形;如果存在,請求出點P的坐標,如果不存在,請說明理由.

【解析】(1)利用A、B兩點的坐標和tan∠BCO=求拋物線解析式

(2)設點m(x,y),則由以MB為直徑的圓與直線BC相切于點B,說明了點B為直徑的一個端點,另外,BC直線方程為y=2x+4,利用BM的中點就是圓心坐標,BM垂直于CB,因此聯(lián)立方程組可得M的坐標

(3)假設存在以點P、Q、C、O為頂點且以OC為一邊的四邊形是直角梯形

則有幾種情況的一種直角為C,直角為P,直角為O,直角為Q的情況 ,那么分情況討論求解,利用一組對邊平行,一個角為直角,進行求解

 

查看答案和解析>>

我們知道,在數(shù)軸上,x=1表示一個點,而在平面直角坐標系中,x=1表示一條直線;我們還知道,以二元一次方程2x-y+1=0的所有解為坐標的點組成的圖形就是一次函數(shù)y=2x+1的圖象,它也是一條直線,如圖1.
觀察圖1可以得出:直線x=1與直線y=2x+1的交點P的坐標(1,3)就是
方程組數(shù)學公式的解,所以這個方程組的解為數(shù)學公式
在直角坐標系中,x≤1表示一個平面區(qū)域,即直線x=1以及它左側(cè)的部分,如圖②;y≤2x+1也表示一個平面區(qū)域,即直線y=2x+1以及它下方的部分,如圖3;
那么,數(shù)學公式所圍成的區(qū)域就是圖4中的陰影部分.

回答下列問題:
(1)在下面的直角坐標系中,用作圖象的方法求出方程組數(shù)學公式的解;
(2)在右面的直角坐標系中用陰影表示,數(shù)學公式所圍成的區(qū)域.

查看答案和解析>>


同步練習冊答案