∴此時兩平行線接平行四邊形ABCD的面積為S= 查看更多

 

題目列表(包括答案和解析)

如圖,已知拋物線m的解析式為y=x2-4,與x軸交于A、C兩點,B是拋物線m上的動點(B不與A、C重合),且B在x軸的下方,拋物線n與拋物線m關于x軸對稱,以AC為對角線的平行四邊形ABCD的第四個頂點為D.
(1)求證:點D一定在拋物線n上.
(2)平行四邊形ABCD能否為矩形?若能為矩形,求出這些矩形公共部分的面積(若只有一個矩形符合條件,則求此矩形的面積);若不能為矩形,請說明理由.
(3)若(2)中過A、B、C、D的圓交y軸于E、F,而P是弧CF上一動點(不包括C、F兩點),連接AP交y軸于N,連接EP交x軸于M.當P在運動時,四邊形AEMN的面積是否改變?若不變,則求其面積;若變化,請說明理由.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

如圖,已知拋物線m的解析式為y=x2-4,與x軸交于A、C兩點,B是拋物線m上的動點(B不與A、C重合),且B在x軸的下方,拋物線n與拋物線m關于x軸對稱,以AC為對角線的平行四邊形ABCD的第四個頂點為D.
(1)求證:點D一定在拋物線n上.
(2)平行四邊形ABCD能否為矩形?若能為矩形,求出這些矩形公共部分的面積(若只有一個矩形符合條件,則求此矩形的面積);若不能為矩形,請說明理由.
(3)若(2)中過A、B、C、D的圓交y軸于E、F,而P是弧CF上一動點(不包括C、F兩點),連接AP交y軸于N,連接EP交x軸于M.當P在運動時,四邊形AEMN的面積是否改變?若不變,則求其面積;若變化,請說明理由.

查看答案和解析>>

如圖,已知拋物線m的解析式為y=x2-4,與x軸交于A、C兩點,B是拋物線m上的動點(B不與A、C重合),且B在x軸的下方,拋物線n與拋物線m關于x軸對稱,以AC為對角線的平行四邊形ABCD的第四個頂點為D.
(1)求證:點D一定在拋物線n上.
(2)平行四邊形ABCD能否為矩形?若能為矩形,求出這些矩形公共部分的面積(若只有一個矩形符合條件,則求此矩形的面積);若不能為矩形,請說明理由.
(3)若(2)中過A、B、C、D的圓交y軸于E、F,而P是弧CF上一動點(不包括C、F兩點),連接AP交y軸于N,連接EP交x軸于M.當P在運動時,四邊形AEMN的面積是否改變?若不變,則求其面積;若變化,請說明理由.

查看答案和解析>>

某班研究性學習小組在研究用一條直線等分幾何圖形的面積時,發(fā)現(xiàn)如下事實:
㈠如圖①,對于三角形ABC,取BC邊中點D,過A、D兩點畫一條直線即可.
理由:∵△ABD與△ADC等底等高,
∴S△ABD=S△ADC
㈡如圖②,對于平行四邊形ABCD,連接兩對角線AC、BD交于點O,過O點任作一直線MN即可.(不妨設與AD、BC分別交于點M、N)
理由:∵四邊形ABCD是平行四邊形,
∴AO=CO,AD∥BC.∴∠MAO=∠NCO.
∴易得S△AOM=S△CON
∴S四邊形ABNM=S四邊形CDMN
受上面的啟發(fā),請你研究一下下面的問題:
某村王大爺家有一塊梯形形狀的稻田(如圖③所示),已知:上底AD=40米,下底BC=60米,高h=30米,王大爺準備把這塊梯形形狀的稻田平均分給兩個兒子(面積相等).
(1)分割方法有許多種,請你幫助王大爺設計兩種不同的分割方案,在圖③、圖④中分別畫出來,并說明理由;
(2)為了盡可能減少筑砌分割田坎的勞動量(只考慮田坎長度對工時的影響,不計其它因素),問:田坎應砌在什么位置最短?請畫出圖形,并求出此時分割線的長度.

查看答案和解析>>

某班研究性學習小組在研究用一條直線等分幾何圖形的面積時,發(fā)現(xiàn)如下事實:
㈠如圖①,對于三角形ABC,取BC邊中點D,過A、D兩點畫一條直線即可.
理由:∵△ABD與△ADC等底等高,
∴S△ABD=S△ADC
㈡如圖②,對于平行四邊形ABCD,連接兩對角線AC、BD交于點O,過O點任作一直線MN即可.(不妨設與AD、BC分別交于點M、N)
理由:∵四邊形ABCD是平行四邊形,
∴AO=CO,ADBC.∴∠MAO=∠NCO.
∴易得S△AOM=S△CON
∴S四邊形ABNM=S四邊形CDMN
受上面的啟發(fā),請你研究一下下面的問題:
某村王大爺家有一塊梯形形狀的稻田(如圖③所示),已知:上底AD=40米,下底BC=60米,高h=30米,王大爺準備把這塊梯形形狀的稻田平均分給兩個兒子(面積相等).
(1)分割方法有許多種,請你幫助王大爺設計兩種不同的分割方案,在圖③、圖④中分別畫出來,并說明理由;
(2)為了盡可能減少筑砌分割田坎的勞動量(只考慮田坎長度對工時的影響,不計其它因素),問:田坎應砌在什么位置最短?請畫出圖形,并求出此時分割線的長度.

查看答案和解析>>


同步練習冊答案