直線PM的方程為y=±(x+1).② 查看更多

 

題目列表(包括答案和解析)

直線l過橢圓
x2
2
+y2=1
的左焦點(diǎn)F,且與橢圓相交于P、Q兩點(diǎn),M為PQ的中點(diǎn),O為原點(diǎn).若△FMO是以O(shè)F為底邊的等腰三角形,則直線l的方程為
y=±
2
2
(x+1)
y=±
2
2
(x+1)

查看答案和解析>>

己知曲線C1:y=ex與C2:y=-
1ex
,若C1、C2分別在點(diǎn)P1、P2處的切線是同一條直l,則直線l的方程為
y=x
y=x

查看答案和解析>>

設(shè)直線l與曲線y=x3+x+1有三個不同的交點(diǎn)A,B,C,且|AB|=|BC|=
5
,則直線l的方程為
y=2x+1
y=2x+1

查看答案和解析>>

直線l的方程為y=x+3,在l上任取一點(diǎn)P,若過點(diǎn)P且以雙曲線12-4=3的焦點(diǎn)為橢圓的焦點(diǎn)作橢圓,那么具有最短長軸的橢圓方程為

 

查看答案和解析>>

已知橢圓C:=1(a>b>0)的離心率為,以原點(diǎn)為圓點(diǎn),橢圓的短半軸為半徑的圓與直線x-y+=0相切。

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對稱的任意兩個不同的點(diǎn),連接PB交隨圓C于另一點(diǎn)E,證明直線AE與x軸相交于定點(diǎn)Q;

【解析】(1)離心率為=,橢圓的短半軸為半徑的圓與直線x-y+=0相切,b==,解得a2=4,b2=3;(Ⅱ)直線PB的方程為y=k(x-4)

 

查看答案和解析>>


同步練習(xí)冊答案