答案:D解析:因為(a?b)c=|a|?|b|?cosθ?c而a(b?c)=|b|?|c|?cosα?a而c方向與a方向不一定同向.評述:向量的積運算不滿足結合律. 查看更多

 

題目列表(包括答案和解析)

答案:D

解析:本題考查同角三角函數關系應用能力,先由cotA=知A為鈍角,cosA<0排除A和B,再由選D

查看答案和解析>>

過平行六面體ABCDA1B1C1D1任意兩條棱的中點作直線,其中與平面DBB1D1平行的直線共有(  )

A.4條          B.6條 

C.8條          D.12條

[答案] D

[解析] 如圖所示,設MN、PQ為所在邊的中點,

則過這四個點中的任意兩點的直線都與面DBB1D1平行,這種情形共有6條;同理,經過BC、CD、B1C1C1D1四條棱的中點,也有6條;故共有12條,故選D.

查看答案和解析>>

答案:D

解析:本題考查同角三角函數關系應用能力,先由cotA=知A為鈍角,cosA<0排除A和B,再由選D

查看答案和解析>>

本題包括高考A,B,C,D四個選題中的B,C兩個小題,每小題10分,共20分.把答案寫在答題卡相應的位置上.解答時應寫出文字說明、證明過程或演算步驟.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量
β
=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:極坐標與參數方程
在直角坐標系x0y中,直線l的參數方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數),若以直角坐標系xOy的O點為極點,Ox為極軸,且長度單位相同,建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-
π
4
)

(1)求直線l的傾斜角;
(2)若直線l與曲線l交于A、B兩點,求AB.

查看答案和解析>>

若a>b>c,則
1
a-b
+
1
b-c
4
a-c

證明:因為(a-c)(
1
a-b
+
1
b-c
)
=(a-b+b-c)(
1
a-b
+
1
b-c
)
=2+
b-c
a-b
+
a-b
b-c

∵a>b>c∴a-b>0,b-c>0;
b-c
a-b
+
a-b
b-c
≥2
b-c
a-b
a-b
b-c
=2
∴2+
b-c
a-b
+
a-b
b-c
≥4∴(a-c)(
1
a-b
+
1
b-c
)
≥4
     因為a>c所以a-c>0
     所以
1
a-b
+
1
b-c
4
a-c

類比上述命題及證明思路,回答以下問題:
①若a>b>c>d,比較
1
a-b
+
1
b-c
+
1
c-d
9
a-d
的大小,并證明你的猜想;
②若a>b>c>d>e,且
1
a-b
+
1
b-c
+
1
c-d
+
1
d-e
m
a-e
恒成立,試猜想m的最大值,并寫出猜想過程,不要求證明.

查看答案和解析>>


同步練習冊答案