題目列表(包括答案和解析)
已知拋物線,過M(a,0)且斜率為1的直線與拋物線交于不同的兩點(diǎn)A、B,。
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值。
分析:這是一道直線與圓錐曲線位置關(guān)系的問題,對于(1),可以設(shè)法得到關(guān)于a的不等式,通過解不等式求出a的范圍,即“求范圍,找不等式”;蛘邔表示為另一個變量的函數(shù),利用求函數(shù)的值域求出a的范圍。對于(2)首先要把△NAB的面積表示為一個變量的函數(shù),然后再求它的最大值。
問題:將y=2x的圖象向________平行移動________個單位,再作關(guān)于直線y=x對稱的圖象,可得函數(shù)y=log2(x+1)的圖象.
對于此問題,甲、乙、丙三位同學(xué)分別給出了不同的解法:
甲:在同一坐標(biāo)系內(nèi)分別作y=2x與y=log2(x+1)的圖象,直接觀察,可知向下平行移動1個單位即得.
乙:與函數(shù)y=log2(x+1)的圖象關(guān)于直線y=x對稱的曲線是它的反函數(shù)y=2x-1的圖象,為了得到它,只需將y=2x的圖象向下平移1個單位.
丙:由所以點(diǎn)(0,0)在函數(shù)y=log2(x+1)的圖象上,(0,0)點(diǎn)關(guān)于y=x的對稱的點(diǎn)還是其本身.函數(shù)y=2x的圖象向左或向右或向上平行移動都不會過(0,0)點(diǎn),因此只能向下平行移動1個單位.
你贊同誰的解法?你還有其他更好的解法嗎?
為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班48人進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:
| 喜愛打籃球 | 不喜愛打籃球 | 合計 |
男生 | | 6 | |
女生 | 10 | | |
合計 | | | 48 |
P(χ2≥x0)或 P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
x0(或k0) | 2.706 | 3.841 | 6.635 | 7.879 |
為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班48人進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:
| 喜愛打籃球 | 不喜愛打籃球 | 合計 |
男生 |
| 6 |
|
女生 | 10 |
|
|
合計 |
|
| 48 |
已知在全班48人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上面的2×2列聯(lián)表補(bǔ)充完整(不用寫計算過程);
(2)你是否有95%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
下面的臨界值表供參考:
P(χ2≥x0)或 P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
x0(或k0) | 2.706 | 3.841 | 6.635 | 7.879 |
(參考公式)χ2=,其中n=n11+n12+n21+n22或K2=,其中n=a+b+c+d)
| 喜愛打籃球 | 不喜愛打籃球 | 合計 |
男生 | | 6 | |
女生 | 10 | | |
合計 | | | 48 |
P(χ2≥x0)或 P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
x0(或k0) | 2.706 | 3.841 | 6.635 | 7.879 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com