即.∴四邊形OANB為平行四邊形 查看更多

 

題目列表(包括答案和解析)

已知橢圓
x2
4
+
y2
9
=1
上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且
PM
=2
MQ
,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)(0,-
4
17
)
且平行于x軸的直線上一動點(diǎn),滿足
ON
=
OA
+
OB
(O為原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

查看答案和解析>>

(本小題滿分12分)

已知橢圓上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且,點(diǎn)M的軌跡為C.

(Ⅰ)求曲線C的方程;

(Ⅱ)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且平行于軸的直線上一動點(diǎn),滿足(O為原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

 

查看答案和解析>>

已知橢圓上任一點(diǎn)P,由點(diǎn)P向x軸作垂線PQ,垂足為Q,點(diǎn)M在PQ上,且,點(diǎn)M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點(diǎn)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且平行于x軸的直線上一動點(diǎn),滿足 (O為原點(diǎn)),且四邊形OANB為矩形,求出直線l的方程.

查看答案和解析>>

已知橢圓
x2
4
+
y2
9
=1
上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且
PM
=2
MQ
,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)(0,-
4
17
)
且平行于x軸的直線上一動點(diǎn),滿足
ON
=
OA
+
OB
(O為原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

查看答案和解析>>

已知橢圓上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且平行于x軸的直線上一動點(diǎn),滿足(O為原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

查看答案和解析>>


同步練習(xí)冊答案