題目列表(包括答案和解析)
3 |
3 |
3 |
3 |
x2 |
a2 |
y2 |
b2 |
3 |
| ||
3 |
|
π |
4 |
2 |
在平面直角坐標系中,O為坐標原點,已知點,,
若點C滿足,點C的軌跡與拋物線交于A、B兩點.
(I)求證:;
(II)在軸正半軸上是否存在一定點,使得過點P的任意一條拋物線的弦的長度是原點到該弦中點距離的2倍,若存在,求出m的值;若不存在,請說明理由.
在平面直角坐標系中,O為坐標原點,已知點,,若點C滿足,點C的軌跡與拋物線交于A、B兩點.
(I)求證:;
(II)在軸正半軸上是否存在一定點,使得過點P的任意一條拋物線的弦的長度是原點到該弦中點距離的2倍,若存在,求出m的值;若不存在,請說明理由.
一、選擇題:
ADBAA BCCDC
二、填空題:
11. ; 12. ; 13.
14(i) ③⑤ (ii) ②⑤ 15.(i)7; (ii).
三、解答題:
16.解:(Ⅰ)
…………5分
由成等比數(shù)列,知不是最大邊
…………6分
(Ⅱ)由余弦定理
得ac=2 …………11分
= …………12分
17.解:(Ⅰ)第一天通過檢查的概率為, ………………………2分
第二天通過檢查的概率為, …………………………4分
由相互獨立事件得兩天全部通過檢查的概率為. ………………6分
(Ⅱ)第一天通過而第二天不通過檢查的概率為, …………8分
第二天通過而第一天不通過檢查的概率為, ………………10分
由互斥事件得恰有一天通過檢查的概率為. ……………………12分
18.解:方法一
(Ⅰ)取的中點,連結,由知,又,故,所以即為二面角的平面角.
在△中,,,,
由余弦定理有
,
所以二面角的大小是. (6分)
(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.
故. …(12分)
19.解:(Ⅰ)設
則 ……①
……②
∴②-①得 2d2=0,∴d=p=0
∴ …………6分
(Ⅱ)當an=n時,恒等式為[S(1,n)]2=S(3,n)
證明:
相減得:
∴
相減得:
又
又
∴ ………………………………13分
20.解:(Ⅰ)∵,∴,
又∵,∴,
∴,
∴橢圓的標準方程為. ………(3分)
當的斜率為0時,顯然=0,滿足題意,
當的斜率不為0時,設方程為,
代入橢圓方程整理得:.
,,.
則
,
而
∴,從而.
綜合可知:對于任意的割線,恒有. ………(8分)
(Ⅱ),
即:,
當且僅當,即(此時適合于的條件)取到等號.
∴三角形△ABF面積的最大值是. ………………………………(13分)
21.解:(Ⅰ) ……………………………………………4分
(Ⅱ)或者……………………………………………8分
(Ⅲ)略 ……………………………………13分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com