本題有三個選答題.每題7分.請考生任選2題作答.滿分14分.如果多做.則按所做的前兩題記分.選修4-2:矩陣與變換 查看更多

 

題目列表(包括答案和解析)

本題有⑴、⑵、⑶三個選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
(1)(本小題滿分7分)選修4—2:矩陣與變換
已知二階矩陣M有特征值及對應(yīng)的一個特征向量,并且矩陣M對應(yīng)的變換將點(diǎn)變換成,求矩陣M。
(2)(本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程
過點(diǎn)M(3,4),傾斜角為的直線與圓C:為參數(shù))相交于A、B兩點(diǎn),試確定的值。
(3)(本小題滿分7分)選修4—5:不等式選講
已知實(shí)數(shù)滿足,,試確定的最大值。

查看答案和解析>>

本題有⑴、⑵、⑶三個選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.

(1)(本小題滿分7分)選修4—2:矩陣與變換

已知二階矩陣M有特征值及對應(yīng)的一個特征向量,并且矩陣M對應(yīng)的變換將點(diǎn)變換成,求矩陣M。

(2)(本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程

過點(diǎn)M(3,4),傾斜角為的直線與圓C:為參數(shù))相交于A、B兩點(diǎn),試確定的值。

(3)(本小題滿分7分)選修4—5:不等式選講

已知實(shí)數(shù)滿足,試確定的最大值。

 

 

查看答案和解析>>

本題有⑴、⑵、⑶三個選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
(1)(本小題滿分7分)選修4—2:矩陣與變換
已知二階矩陣M有特征值及對應(yīng)的一個特征向量,并且矩陣M對應(yīng)的變換將點(diǎn)變換成,求矩陣M。
(2)(本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程
過點(diǎn)M(3,4),傾斜角為的直線與圓C:為參數(shù))相交于A、B兩點(diǎn),試確定的值。
(3)(本小題滿分7分)選修4—5:不等式選講
已知實(shí)數(shù)滿足,,試確定的最大值。

查看答案和解析>>

本題有(1)、(2)、(3)三個小題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分
(1)已知
10
12
B=
-43
4-1
,求矩陣B.
(2)已知極點(diǎn)與原點(diǎn)重合,極軸與x軸正半軸重合,若曲線C1的極坐標(biāo)方程為:ρcos(θ-
π
4
)=
2
,曲線C2的參數(shù)方程為:
x=2cosθ
y=
3
sinθ
(θ為參數(shù)),試求曲線C1、C2的交點(diǎn)的直角坐標(biāo).
(3)已知x2+2y2+3z2=
18
17
,求3x+2y+z的最小值.

查看答案和解析>>

本題有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分
(1)二階矩陣M對應(yīng)的變換將向量
1
-1
,
-2
1
分別變換成向量
3
-2
,
-2
1
,直線l在M的變換下所得到的直線l′的方程是2x-y-1=0,求直線l的方程.
(2)過點(diǎn)P(-3,0)且傾斜角為30°的直線l和曲線C:
x=s+
1
s
y=s-
1
s
(s為參數(shù))相交于A,B兩點(diǎn),求線段AB的長.
(3)若不等式|a-1|≥x+2y+2z,對滿足x2+y2+z2=1的一切實(shí)數(shù)x,y,z恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

 

說明:

      一、本解答指出了每題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標(biāo)準(zhǔn)制定相應(yīng)的評分細(xì)則.

    二、對計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯誤,就不再給分.

    三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

    四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.

一、選擇題:本題考查基本知識和基本運(yùn)算,每小題5分,滿分50分.

1. A        2. C        3. C        4.C     5.D     6.D     7. B        8. D        9. B        10. C

二、填空題:本題考查基本知識和基本運(yùn)算,每小題4分,滿分20分.

11.  12.38            12.  5           13.  3        14.     15. ②③

三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程或演算步驟.

16. 本小題主要考查正弦定理、三角函數(shù)的倍角公式、兩角和公式等基本知識,考

查學(xué)生的運(yùn)算求解能力. 滿分13分.

解:(Ⅰ)由,知                   ………………………(2分)

,得,

          ,                      ………………………(5分)

                                    ………………………(6分)

(Ⅱ) 由(Ⅰ)知,

          

                   ………………………………(9分)

        

         當(dāng),即時,取得最大值為.   ……………(13分)                               

17. 本題主要考查線線、線面、面面位置關(guān)系,線面角等基本知識,考查空間想像能力,運(yùn)算求解能力和推理論證能力. 滿分13分.

解:(Ⅰ)證明:如圖,取中點(diǎn),連結(jié),;

,,

,

,…………(3分)

四邊形為平行四邊形,

,

平面平面,

∥平面.                          ………………………(6分)

(Ⅱ)依題意知平面平面,

平面,得  

,.

如圖,以為原點(diǎn),建立空間直角坐標(biāo)系-xyz,

,可得、、,

.

設(shè)平面的一個法向量為,

   得

解得,.             ………………………(9分)

設(shè)線段上存在一點(diǎn),其中,則

,

依題意:,即,

可得,解得(舍去).  

             所以上存在一點(diǎn).   …………(13分)

18.本題主要考查函數(shù)與導(dǎo)數(shù)等基本知識,考查運(yùn)用數(shù)學(xué)知識分析問題與解決問題的能力,

考查應(yīng)用意識. 滿分13分.

    解:(Ⅰ)依題意,

銷售價提高后為6000(1+)元/臺,月銷售量為臺……………(2分)

               ……………………(4分)

.       ……………………(6分)

   (Ⅱ)

,得,

解得舍去).                      ……………………(9分)

當(dāng) 當(dāng)

當(dāng)時,取得最大值.

此時銷售價為元.

答:筆記本電腦的銷售價為9000元時,電腦企業(yè)的月利潤最大.…………………(13分)

19.本題主要考查直線與橢圓的位置關(guān)系、不等式的解法等基本知識,考查運(yùn)算求解能力和分析問題、解決問題的能力. 滿分13分

解:(Ⅰ)因?yàn)闄E圓的一個焦點(diǎn)是(1,0),所以半焦距=1.

因?yàn)闄E圓兩個焦點(diǎn)與短軸的一個端點(diǎn)構(gòu)成等邊三角形.

所以,解得

所以橢圓的標(biāo)準(zhǔn)方程為.  …(4分)                

(Ⅱ)(i)設(shè)直線聯(lián)立并消去得:.

,

,

.  ……………(5分)

A關(guān)于軸的對稱點(diǎn)為,得,

根據(jù)題設(shè)條件設(shè)定點(diǎn)為,0),

,即.

所以

即定點(diǎn)(1 , 0).                 ……………………………………(8分)

(ii)由(i)中判別式,解得.    

可知直線過定點(diǎn) (1,0).

所以          ……………(10分)

,  令

,得,當(dāng)時,.

上為增函數(shù).

所以 ,

.

故△OA1B的面積取值范圍是.                     ……………(13分)

20. 本題主要考查函數(shù)的單調(diào)性、等差數(shù)列、不等式等基本知識,考查運(yùn)用合理的推理證明解

決問題的方法,考查分類與整合及化歸與轉(zhuǎn)化等數(shù)學(xué)思想. 滿分14分.

解:(Ⅰ)因?yàn)?sub>

所以.           ………………(1分)

(i)當(dāng)時,.

(ii)當(dāng)時,由,得到,知在.

(iii)當(dāng)時,由,得到,知在.

綜上,當(dāng)時,遞增區(qū)間為;當(dāng)時, 遞增區(qū)間為.                   ………………………………………(4分)

(Ⅱ)(i)因?yàn)?sub>,

所以,即,

,即.     ……………………………………(6分)

因?yàn)?sub>,

當(dāng)時,,

當(dāng)時,

所以.                  …………………………(8分)

又因?yàn)?sub>,

所以令,則

得到矛盾,所以不在數(shù)列中.    ………(9分)

(ii)充分性:若存在整數(shù),使.

設(shè)為數(shù)列中不同的兩項(xiàng),則

.

,所以.

是數(shù)列的第項(xiàng).           ……………………(10分)

必要性:若數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng),

,,(,為互不相同的正整數(shù))

,令,

得到

所以,令整數(shù),所以. ……(11 分)

下證整數(shù)

若設(shè)整數(shù).令,

由題設(shè)取使

,所以

相矛盾,所以.

綜上, 數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng)的充要條件是存在整數(shù),使.                          ……………………(14分)

21. (1)本題主要考查矩陣乘法、逆矩陣與變換等基本知識,考查運(yùn)算求解能力, 滿分7分.

解: ,即 ,

所以  得              ……………………(4分)

     即M=   , .

=1 ,  .           …………………(7分)

(2)本題主要考查圓極坐標(biāo)方程和直線參數(shù)方程等基本知識,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想. 滿分7分.

解:曲線的極坐標(biāo)方程可化為,

其直角坐標(biāo)方程為,即.      ……………(2分)

直線的方程為.

所以,圓心到直線的距離          ……………………(5分)

所以,的最小值為.                  …………………………(7分)

(3)本題主要考查柯西不等式與不等式解法等基本知識,考查化歸與轉(zhuǎn)化思想. 滿分7分.

解:由柯西不等式:

. …………(3分)

因?yàn)?sub>

所以,即

因?yàn)?sub>的最大值是7,所以,得

當(dāng)時,取最大值,

所以.                          ………………………………………(7分)

 

 


同步練習(xí)冊答案