④非零向量的夾角為30°. 其中正確的是 20090514第Ⅱ卷 查看更多

 

題目列表(包括答案和解析)

①非零向量a,b滿足|a|=|b|=|a-b|,則aa+b的夾角為30°;
②“a·b>0”是“ab的夾角為銳角”的充要條件;
③將函數(shù)y=|x+1|的圖象按向量a=(-1,0)平移,得到的圖象對(duì)應(yīng)的函數(shù)表達(dá)式為y=|x|;
④在△ABC中,若,則△ABC為等腰三角形。
其中正確的命題是(    )。(注:把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

關(guān)于平面向量有下列四個(gè)命題:
①若
a
b
=
a
c
,則
b
=
c
,;
②已知
a
=(k,3),
b
=(-2,6).若
a
b
,則k=-1.
③非零向量
a
b
,滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為30°.
④(
a
|
a
|
+
b
|
b
|
 )•(
a
|
a
|
-
b
|
b
|
 )=0.
其中正確的命題為
 
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

關(guān)于平面向量有下列四個(gè)命題:
①若
a
b
=
a
c
,則
b
=
c
,;
②已知
a
=(k,3),
b
=(-2,6).若
a
b
,則k=-1.
③非零向量
a
b
,滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為30°.
④(
a
|
a
|
+
b
|
b
|
 )•(
a
|
a
|
-
b
|
b
|
 )=0.
其中正確的命題為 ______.(寫出所有正確命題的序號(hào))

查看答案和解析>>

(2012•安徽模擬)給出下列命題,其中正確的命題是
①③④
①③④
(寫出所有正確命題的編號(hào)).
①非零向量
a
、
b
滿足|
a
|=|
b
|=|
a
-
b
|
,則
a
a
+
b
的夾角為30°;
②已知非零向量
a
b
,則“
a
b
>0
”是“
a
、
b
的夾角為銳角”的充要條件;
③命題“在三棱錐O-ABC中,已知
OP
=x
OA
+y
OB
-2
OC
,若點(diǎn)P在△ABC所在的平面內(nèi),則x+y=3”的否命題為真命題;
④若(
AB
+
AC
)•(
AB
-
AC
)=0
,則△ABC為等腰三角形.

查看答案和解析>>

給出下列命題:

1)已知是兩個(gè)非零向量,且,則的夾角是30°;

2)若,則;

3)若不平行的兩個(gè)非零向量,滿足,則

4)若平行,則

5,則

其中真命題的序號(hào)是________(把你認(rèn)為正確的命題序號(hào)都填上).

 

查看答案和解析>>

 

一、選擇題:

       BDDCB  BBAAC  AC

二、填空題:

13.   14.6   15.    16.

17.解:(I)取AC的中點(diǎn)G,連接OG,EG,

      

       平面OEG

           5分

    20090514

           平面ABC

          

           又

           又F為AB中點(diǎn),

          

           ,

           平面SOF,

           平面SAB,

           平面SAB      10分

    18.解:

          

          

          

                6分

       (I)由,

        得對(duì)稱軸方程     8分

       (II)由已知條件得,

          

          

                12分

    19.解:設(shè)點(diǎn),點(diǎn)共有16個(gè):(0,0),(0,-1),(-1,0),(0,1),(1,0),

       (0,2),(2,0),(-1,-1),(-1,1),(1,-1),(-1,2),(2,-1),(1,1),(1,2),

       (2,1),(2,2)       3分

       (I)傾斜角為銳角,

          

           則點(diǎn)P有(-1,1),(1,-1),(-1,2),(2,-1),

               6分

       (II)直線不平行于x軸且不經(jīng)過第一象限

       

           即     10分

           *點(diǎn)P有(-1,-1),(-1,0),

           概率      12分

    20.解:(I),直線AF2的方程為

           設(shè)

           則有,

          

               6分

       (II)假設(shè)存在點(diǎn)Q,使

          

                 8分

          

           *Q在以MN為直徑的圓(除去M,N點(diǎn))上,

           圓心O(0,0),半徑為

           又點(diǎn)Q在圓

           *圓O與圓相離,假設(shè)不成立

           *上不存在符合題意的點(diǎn)Q。      12分

    21.解:(I)

           是等差數(shù)列

           又

               2分

          

          

                5分

           又

           為首項(xiàng),以為公比的等比數(shù)列      6分

       (II)

          

           當(dāng)

           又               

           是單調(diào)遞增數(shù)列      9分

       (III)時(shí),

          

           即

                  12分

    22.解L

           的值域?yàn)閇0,1]        2分

           設(shè)的值域?yàn)锳,

           ,

           總存在

          

          

       (1)當(dāng)時(shí),

           上單調(diào)遞減,

          

          

               5分

       (2)當(dāng)時(shí),

          

           令

           (舍去)

           ①當(dāng)時(shí),列表如下:

          

    0

    3

     

    -

    0

    +

     

    0

           ,

           則

                9分

           ②當(dāng)時(shí),時(shí),

           函數(shù)上單調(diào)遞減

          

          

                  11分

           綜上,實(shí)數(shù)的取值范圍是      12分


    同步練習(xí)冊(cè)答案