將x1+x2= 代入上式.整理得t=1.綜上所述::存在點N滿足條件.點N的坐標(biāo)是N(1.0). ----12分 查看更多

 

題目列表(包括答案和解析)

(2012•綿陽三模)已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實常數(shù)).
(I)討論函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)a>0時,函數(shù)f(x)有三個不同的零點,證明:-a<b<a3-a;
(III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設(shè)關(guān)于X的方程f(x)=2x3-2ax2+3x+a+b的兩個非零實數(shù)根為x1,x2.試問是否存在實數(shù)m,使得m2+tm+1≤|x1-x2|對任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實常數(shù)).
(I)討論函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)a>0時,函數(shù)f(x)有三個不同的零點,證明:-a<b<a3-a;
(III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設(shè)關(guān)于X的方程f(x)=2x3-2ax2+3x+a+b的兩個非零實數(shù)根為x1,x2.試問是否存在實數(shù)m,使得m2+tm+1≤|x1-x2|對任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知f(x)=,且f(1)=3,
(1)試求a的值,并證明f(x)在[,+∞)上單調(diào)遞增.
(2)設(shè)關(guān)于x的方程f(x)=x+b的兩根為x1,x2,試問是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意的b∈[2,]及t∈[-1,1]恒成立?若存在,求出m的取值范圍;若不存在說明理由.

查看答案和解析>>

已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實常數(shù)).
(I)討論函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)a>0時,函數(shù)f(x)有三個不同的零點,證明:-a<b<a3-a;
(III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設(shè)關(guān)于X的方程f(x)=2x3-2ax2+3x+a+b的兩個非零實數(shù)根為x1,x2.試問是否存在實數(shù)m,使得m2+tm+1≤|x1-x2|對任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標(biāo)得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步練習(xí)冊答案