(2012•綿陽三模)已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實常數(shù)).
(I)討論函數(shù)的單調(diào)區(qū)間;
(II) 當a>0時,函數(shù)f(x)有三個不同的零點,證明:-a<b<a3-a;
(III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設(shè)關(guān)于X的方程f(x)=2x3-2ax2+3x+a+b的兩個非零實數(shù)根為x1,x2.試問是否存在實數(shù)m,使得m2+tm+1≤|x1-x2|對任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
分析:(I)求導函數(shù),對參數(shù)a進行討論,利用導數(shù)的正負,確定函數(shù)的單調(diào)區(qū)間;
(II)確定f(x)的極大值為f(0)=a+b,f(x)的極小值為f(a)=a+b-a3,要使f(x)有三個不同的零點,則
f(0)>0
f(a)<0
,從而得證;
(III)先確定|x1-x2|=
a2+12
,并求得其最小值,假設(shè)存在實數(shù)m滿足條件,則m2+tm+1≤(
a2+12
min,即m2+tm+1≤4,即m2+tm-3≤0在t∈[-1,1]上恒成立,從而可求m的范圍.
解答:(I)解:∵f′(x)=6x2-6ax=6x(x-a),
當a=0時,f′(x)=6x≥0,于是f(x)在R上單調(diào)遞增;
當a>0時,x∈(0,a),f′(x)<0,得f(x)在(0,a)上單調(diào)遞減;
x∈(-∞,0)∪(a,+∞),f′(x)>0,得f(x)在(-∞,0),(a,+∞)上單調(diào)遞增;
當a<0時,x∈(a,0),f′(x)<0,得f(x)在(0,a)上單調(diào)遞減;
x∈(-∞,a)∪(0,+∞),f′(x)>0,得f(x)在(-∞,a),(0,+∞)上單調(diào)遞增.
綜上所述:當a=0時,f(x)的增區(qū)間為(-∞,+∞);
當a>0時,f(x)的增區(qū)間為(-∞,0),(a,+∞),f(x)的減區(qū)間為(0,a);
當a<0時,f(x)的增區(qū)間為(-∞,a),(0,+∞),f(x)的減區(qū)間為(a,0).…(3分)
(II)證明:當a>0時,由(I)得f(x)在(-∞,0),(a,+∞)上是增函數(shù),f(x)在(0,a)上是減函數(shù);
則f(x)的極大值為f(0)=a+b,f(x)的極小值為f(a)=a+b-a3
要使f(x)有三個不同的零點,則
f(0)>0
f(a)<0
,即
a+b>0
a+b-a3<0

可得-a<b<a3-a.…(8分)
(III)解:由2x3-3ax2+a+b=x3-2ax2+3x+a+b,得x3-ax2-3x=0即x(x2-ax-3)=0,
由題意得x2-ax-3=0有兩非零實數(shù)根x1,x2,則x1+x2=a,x1x2=-3,
∴|x1-x2|=
a2+12

∵f (x)在[1,2]上是減函數(shù),
∴f′(x)=6x2-6ax=6x(x-a)≤0在[1,2]上恒成立,其中x-a≤0即x≤a在[1,2]上恒成立,
∴a≥2.
a2+12
≥4.
假設(shè)存在實數(shù)m滿足條件,則m2+tm+1≤(
a2+12
min,即m2+tm+1≤4,即m2+tm-3≤0在t∈[-1,1]上恒成立,
m2-m-3≤0
m2+m-3≤0
,解得
1-
13
2
≤m≤
13
-1
2

∴存在實數(shù)m滿足條件,此時m∈[
1-
13
2
,
13
-1
2
].  …(14分)
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查分類討論的數(shù)學思想,考查函數(shù)的極值與最值,考查恒成立問題,綜合性強.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•綿陽三模)拋物線y=-x2的焦點坐標為
(0,-
1
4
(0,-
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•綿陽三模)已知函數(shù)f(x)=Asin(wx+φ)(A>0,w>0,|φ|<
π
2
,x∈R)在一個周期內(nèi)的圖象如圖所示.則y=f(x)的圖象可由函數(shù)y=cosx的圖象(縱坐標不變)(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•綿陽三模)已知正項等差數(shù)列{an}的前n項和為Sn,且S15=45,M為a5,a11的等比中項,則M的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•綿陽三模)已知函數(shù)f(x)=
ax
+blnx+c(a>0)的圖象在點(1,f(1))處的切線方程為x-y-2=0.
(I)用a表示b,c;
(II)若函數(shù)g(x)=x-f(x)在x∈(0,1]上的最大值為2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•綿陽三模)某電視臺有A、B兩種智力闖關(guān)游戲,甲、乙、丙、丁四人參加,其中甲乙兩人各自獨立進行游戲A,丙丁兩人各自獨立進行游戲B.已知甲、乙兩人各自闖關(guān)成功的概率均為
1
2
,丙、丁兩人各自闖關(guān)成功的概率均為
2
3

(I )求游戲A被闖關(guān)成功的人數(shù)多于游戲B被闖關(guān)成功的人數(shù)的概率;
(II) 記游戲A、B被闖關(guān)成功的總?cè)藬?shù)為ξ,求ξ的分布列和期望.

查看答案和解析>>

同步練習冊答案