又設(shè)橢圓方程為 ② 查看更多

 

題目列表(包括答案和解析)

設(shè)橢圓C2
x2
a2
+
y2
b2
=1(a>b>0),拋物線C2:x2+by=b2
(1)若C2經(jīng)過C1的兩個焦點,求C1的離心率;
(2)設(shè)A(0,b),Q(3
3
,
5
4
)
,又M、N為C1與C2不在y軸上的兩個交點,若△AMN的垂心為B(0,
3
4
b)
,且△QMN的重心在C2上,求橢圓C和拋物線C2的方程.

查看答案和解析>>

已知橢圓方程為C:
x2
2
+y2
=1,它的左、右焦點分別為F1、F2.點P(x0,y0)為第一象限內(nèi)的點.直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標(biāo)原點.
(1)求橢圓上的點與兩焦點連線的最大夾角;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2.試找出使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0成立的條件(用k1、k2表示).
(3)又已知點E為拋物線y2=2px(p>0)上一點,直線F2E與橢圓C的交點G在y軸的左側(cè),且滿足
EG
=2
F2E
,求p的最大值.

查看答案和解析>>

設(shè)橢圓ax2+by2=1與直線x+y=1相交于A、B兩點,且|AB|=2.又AB的中點M與橢圓中心連線的斜率為,求橢圓的方程.

查看答案和解析>>

設(shè)橢圓C1:+=1(a>b>0),拋物線C2:x2+by=b2.

(1)C2經(jīng)過C1的兩個焦點,C1的離心率;

(2)設(shè)A(0,b),Q3,b,M,NC1C2不在y軸上的兩個交點,若△AMN的垂心為B0,b,且△QMN的重心在C2,求橢圓C1和拋物線C2的方程.

 

查看答案和解析>>

 

設(shè)橢圓,拋物線。

(1)  若經(jīng)過的兩個焦點,求的離心率;

(2)  設(shè)A(0,b),,又M、N為不在y軸上的兩個交點,若△AMN的垂心為,且△QMN的重心在上,求橢圓和拋物線的方程。

 

查看答案和解析>>


同步練習(xí)冊答案