16.給出下列四個(gè)結(jié)論: 查看更多

 

題目列表(包括答案和解析)

給出下列四個(gè)結(jié)論:
①在△ABC中,∠A>∠B是sinA>sinB的充要條件;
②某企業(yè)有職工150人,其中高級(jí)職稱15人,中級(jí)職稱45人,一般職員90人,若用分層抽樣的方法抽出一個(gè)容量為30的樣本,則一般職員應(yīng)抽出20人;
③如果函數(shù)f(x)對任意的x∈R都滿足f(x)=-f(2+x),則函數(shù)f(x)是周期函數(shù);
④已知點(diǎn)(
π
4
,0)和直線x=
π
2
分別是函數(shù)y=sin(ωx+φ)(ω>0)圖象的一個(gè)對稱中心和一條對稱軸,則ω的最小值為2;其中正確結(jié)論的序號(hào)是
 
.(填上所有正確結(jié)論的序號(hào)).

查看答案和解析>>

15、給出下列四個(gè)結(jié)論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③函數(shù)f(x)=x-sinx(x∈R)有3個(gè)零點(diǎn);
④對于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí),f′(x)>g′(x).
其中正確結(jié)論的序號(hào)是
①④
(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

給出下列四個(gè)結(jié)論:①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;②函數(shù)y=k3x(k>0)(k為常數(shù))的圖象可由函數(shù)y=3x的圖象經(jīng)過平移得到;③函數(shù)y=
1
2
+
1
2x-1
(x≠0)是奇函數(shù)且函數(shù)y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函數(shù);④函數(shù)y=cos|x|是周期函數(shù).其中正確結(jié)論的序號(hào)是
 
.(填寫你認(rèn)為正確的所有結(jié)論序號(hào))

查看答案和解析>>

給出下列四個(gè)結(jié)論:
①“若am2<bm2,則a<b”的逆命題為真;
②命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
③若a>0,b>0,A為a,b的等差中項(xiàng),正數(shù)G為a,b的等比中項(xiàng),則ab≥AG
④已知函數(shù)f(x)=log2x+logx2+1,x∈(0,1),則f(x)的最大值為-1.
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

7、給出下列四個(gè)結(jié)論:
①命題“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
②給出四個(gè)函數(shù)y=x-1,y=x,y=x2,y=x3,則在R上是增函數(shù)的函數(shù)有3個(gè);
③已知a,b∈R,則“等式|a+b|=|a|+|b|成立”的充要條件是“ab≥0”;
④若復(fù)數(shù)z=(m2+2m-3)+(m-1)i是純虛數(shù),則實(shí)數(shù)m的值為-3或1.
其中正確的個(gè)數(shù)是( 。

查看答案和解析>>

一、選擇題:

1.C  2.A 3 .C  4.A  5.A  6.B  7.A  8.A  9.A  10.A  11.C  12.D

二、填空題:

13.12          14.    15   a= ―3,B=3    16.,①②③④    

⒘⒚同理科

⒙(I)解:設(shè)數(shù)列{}的公比為q,由可得

       解得a1=2,q=4.所以數(shù)列{}的通項(xiàng)公式為…………6分

   (II)解:由,得

       所以數(shù)列{}是首項(xiàng)b1=1,公差d=2的等差數(shù)列.故.

       即數(shù)列{}的前n項(xiàng)和Sn=n2.…………………………………

⒛(I)解:只進(jìn)行兩局比賽,甲就取得勝利的概率為    …………4分

   (II)解:只進(jìn)行兩局比賽,比賽就結(jié)束的概率為:     (III)解:甲取得比賽勝利共有三種情形:

若甲勝乙,甲勝丙,則概率為;

若甲勝乙,甲負(fù)丙,則丙負(fù)乙,甲勝乙,概率為;

若甲負(fù)乙,則乙負(fù)丙,甲勝丙,甲勝乙,概率為

       所以,甲獲勝的概率為 …………

21.  (I)解:由點(diǎn)MBN中點(diǎn),又,

       可知PM垂直平分BN.所以|PN|=|PB|,又|PA|+|PN|=|AN|,所以|PA|+|PB|=4.

       由橢圓定義知,點(diǎn)P的軌跡是以A,B為焦點(diǎn)的橢圓.

       設(shè)橢圓方程為,由2a=4,2c=2,可得a2=4,b2=3.

       可知?jiǎng)狱c(diǎn)P的軌跡方程為…………………………6分

   (II)解:設(shè)點(diǎn)的中點(diǎn)為Q,則,

       ,

       即以PB為直徑的圓的圓心為,半徑為

       又圓的圓心為O(0,0),半徑r2=2,

       又

       =,故|OQ|=r2r1,即兩圓內(nèi)切.…………………12分

22. 解:(1)

當(dāng)a>0時(shí),遞增;

當(dāng)a<時(shí),遞減…………………………5分

(2)當(dāng)a>0時(shí)

0

+

0

0

+

極大值

極小值

此時(shí),極大值為…………7分

當(dāng)a<0時(shí)

0

0

+

0

極小值

極大值

此時(shí),極大值為…………9分

因?yàn)榫段AB與x軸有公共點(diǎn)

所以

解得……………………12分

 

 

 

 


同步練習(xí)冊答案