題目列表(包括答案和解析)
已知函數(shù).()
(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。
解:(1)在區(qū)間上單調(diào)遞增,
則在區(qū)間上恒成立. …………3分
即,而當(dāng)時(shí),,故. …………5分
所以. …………6分
(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.
∵ …………9分
① 若,令,得極值點(diǎn),,
當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;
當(dāng),即時(shí),同理可知,在區(qū)間上遞增,
有,也不合題意; …………11分
② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足,
由此求得的范圍是. …………13分
綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時(shí),在曲線上是否存在兩點(diǎn),使得曲線在兩點(diǎn)處的切線均與直線交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的取值范圍;若不存在,請(qǐng)說明理由;
(Ⅲ)若在區(qū)間存在最大值,試構(gòu)造一個(gè)函數(shù),使得同時(shí)滿足以下三個(gè)條件:①定義域,且;②當(dāng)時(shí),;③在中使取得最大值時(shí)的值,從小到大組成等差數(shù)列.(只要寫出函數(shù)即可)
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時(shí),在曲線上是否存在兩點(diǎn),使得曲線在兩點(diǎn)處的切線均與直線交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的取值范圍;若不存在,請(qǐng)說明理由;
(Ⅲ)若在區(qū)間存在最大值,試構(gòu)造一個(gè)函數(shù),使得同時(shí)滿足以下三個(gè)條件:①定義域,且;②當(dāng)時(shí),;③在中使取得最大值時(shí)的值,從小到大組成等差數(shù)列.(只要寫出函數(shù)即可)
設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.對(duì)任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長(zhǎng)度的方法.
(I)證明:對(duì)任意的∈(O,1),,若f()≥f(),則(0,)為含峰區(qū)間:若f()f(),則為含峰區(qū)間:
(II)對(duì)給定的r(0<r<0.5),證明:存在∈(0,1),滿足,使得由(I)所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r:
(III)選取∈(O,1),,由(I)可確定含峰區(qū)間為或,在所得的含峰區(qū)間內(nèi)選取,由與或與類似地可確定一個(gè)新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對(duì)值不小于0.02,且使得新的含峰區(qū)間的長(zhǎng)度縮短到0. 34(區(qū)間長(zhǎng)度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com