已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時(shí),在曲線上是否存在兩點(diǎn),使得曲線在兩點(diǎn)處的切線均與直線交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)若在區(qū)間存在最大值,試構(gòu)造一個(gè)函數(shù),使得同時(shí)滿足以下三個(gè)條件:①定義域,且;②當(dāng)時(shí),;③在中使取得最大值時(shí)的值,從小到大組成等差數(shù)列.(只要寫(xiě)出函數(shù)即可)
(Ⅰ)詳見(jiàn)解析;(Ⅱ)存在,且交點(diǎn)縱坐標(biāo)的取值范圍是;(Ⅲ)詳見(jiàn)解析.
【解析】
試題分析:(Ⅰ)對(duì)參數(shù)的值影響函數(shù)極值點(diǎn)的存在與否進(jìn)行分類(lèi)討論,結(jié)合求解導(dǎo)數(shù)不等式求相應(yīng)的單調(diào)區(qū)間;(Ⅱ)先將曲線在點(diǎn)、處的切線方程求出,并將交點(diǎn)的坐標(biāo)假設(shè)出來(lái),利用交點(diǎn)坐標(biāo)滿足兩條切線方程,得到兩個(gè)不同的等式,然后利用等式的結(jié)構(gòu)進(jìn)行相應(yīng)轉(zhuǎn)化為函數(shù)的零點(diǎn)個(gè)數(shù)來(lái)處理;(Ⅲ)可以根據(jù)題中的條件進(jìn)行構(gòu)造,但要注意定義域等相應(yīng)問(wèn)題.
試題解析:(Ⅰ)依題可得 ,
當(dāng)時(shí),恒成立,函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),由,解得或,
單調(diào)遞增區(qū)間為和. 4分
(Ⅱ)設(shè)切線與直線的公共點(diǎn)為,當(dāng)時(shí),,
則,因此以點(diǎn)為切點(diǎn)的切線方程為.
因?yàn)辄c(diǎn)在切線上,所以,即.
同理可得方程. 6分
設(shè),則原問(wèn)題等價(jià)于函數(shù)至少有兩個(gè)不同的零點(diǎn).
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092423494809212205/SYS201309242350348020390028_DA.files/image027.png">,
當(dāng)或時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減.
因此,在處取極大值,在處取極小值.
若要滿足至少有兩個(gè)不同的零點(diǎn),則需滿足解得.
故存在,且交點(diǎn)縱坐標(biāo)的取值范圍為. 10分
(Ⅲ)由(Ⅰ)知,,即. 11分
本題答案不唯一,以下幾個(gè)答案供參考:
①,其中;
②其中;
③其中. 14分
考點(diǎn):函數(shù)的單調(diào)區(qū)間、函數(shù)的零點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省江門(mén)市新會(huì)一中高三(上)第四次檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二下期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)求出使成立的的取值范圍;
(2)當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆云南省高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本題滿分10分)已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若把向右平移個(gè)單位得到函數(shù),求在區(qū)間上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試陜西文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)已知函數(shù).
(Ⅰ)求函數(shù)的最小正周期及最值;
(Ⅱ)令,判斷函數(shù)的奇偶性,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com