因 故函數(shù)上是增函數(shù). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)求函數(shù)在區(qū)間上的最大值和最小值.

【解析】(1)

所以,的最小正周期

(2)因為在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),

,,,

故函數(shù)在區(qū)間上的最大值為,最小值為-1.

 

查看答案和解析>>

已知函數(shù).(

(1)若在區(qū)間上單調遞增,求實數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調遞增,

在區(qū)間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,

,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

,即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

已知函數(shù),

(1)設常數(shù),若在區(qū)間上是增函數(shù),求的取值范圍;

(2)設集合,,若,求的取值范圍.

【解析】本試題主要考查了三角函數(shù)的性質的運用以及集合關系的運用。

第一問中利用

利用函數(shù)的單調性得到,參數(shù)的取值范圍。

第二問中,由于解得參數(shù)m的取值范圍。

(1)由已知

又因為常數(shù),若在區(qū)間上是增函數(shù)故參數(shù) 

 (2)因為集合,若

 

查看答案和解析>>

下列敘述中正確的個數(shù)為( 。
①y=tanx在R上是增函數(shù);
②y=sinx,x∈[0,2π]的圖象關于點P(π,0)成中心對稱圖形;
③y=cosx,x∈[0,2π]的圖象關于直線x=π成軸對稱圖形;
④正弦、余弦函數(shù)y=sinx、y=cosx的圖象不超出兩直線y=-1,y=1所夾的范圍.
A、1個B、2個C、3個D、4個

查看答案和解析>>

9、定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在[-1,0]上是增函數(shù),給出下列關于f(x)的判斷:
①f(x)是周期函數(shù);
②f(x)關于直線x=1對稱;
③f(x)在[0,1]上是增函數(shù);
④f(x)在[1,2]上是減函數(shù);
⑤f(2)=f(0),
其中正確的序號是
①②⑤

查看答案和解析>>


同步練習冊答案