任意一點(diǎn)到橢圓C的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于6.則曲線的方程為 查看更多

 

題目列表(包括答案和解析)

已知橢圓C的中心在坐標(biāo)原點(diǎn),橢圓C任意一點(diǎn)P到兩個(gè)焦點(diǎn)F1(-
3
,0)
F2(
3
,0)
的距離之和為4.
(1)求橢圓C的方程;
(2)設(shè)過(0,-2)的直線l與橢圓C交于A、B兩點(diǎn),且
OA
OB
=0
(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

橢圓(a>b>0)上任意一點(diǎn),到兩個(gè)焦點(diǎn)的距離分別為r1、r2焦距為2c,若r1、2c、r2成等差數(shù)列,則橢圓的離心率為(  )

A.                            B.                         C.                         D.

查看答案和解析>>

已知橢圓C的中心在坐標(biāo)原點(diǎn),橢圓C任意一點(diǎn)P到兩個(gè)焦點(diǎn)F1(-
3
,0)
F2(
3
,0)
的距離之和為4.
(1)求橢圓C的方程;
(2)設(shè)過(0,-2)的直線l與橢圓C交于A、B兩點(diǎn),且
OA
OB
=0
(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

橢圓=1(a>b>0)上任意一點(diǎn),到兩個(gè)焦點(diǎn)的距離分別為r1、r2,焦距為2c,若r1、2c、r2成等差數(shù)列,則橢圓的離心率為(    )

A.                B.                C.                D.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)
的離心率為
6
3
,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx-2與橢圓C交與A,B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,求直線l的方程.

查看答案和解析>>

一、選擇題:(每小題5分,共50分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

B

D

B

A

C

C

C

A

A

B

二、填空題:(每小題4分,共24分)

11.     12.4       13.      14.     15.4   16.

三、解答題:(共76分,以下各題為累計(jì)得分,其他解答請(qǐng)相應(yīng)給分)

17.解:(I)

          

        由,得。

        又當(dāng)時(shí),得

       

       (Ⅱ)當(dāng)

        即時(shí)函數(shù)遞增。

        故的單調(diào)增區(qū)間為,

18.解:(I)各取1個(gè)球的結(jié)果有(紅,紅1)(紅,紅2)(紅,白1)(紅,白2)(紅,黑)

(白,紅2)(白,紅2)(白,白1)(白,白2)(白,黑)(白,紅1)(白,紅2

(白,白1)(白,白2)(白,黑)(黑1,紅1)(黑1,紅2)(黑1,白1)(黑1,白2)(黑1,黑)(黑2,紅1)(黑2,紅2)(黑2,白1)(黑2,白2)(黑2,黑)(黑3,紅1

(黑3,紅2)(黑3,白1)(黑3,白2)(黑3,黑)

等30種情況

其中恰有1白1黑有(白,黑)…(黑3,白2)8種情況,

故1白1黑的概率為

   (Ⅱ)2紅有2種,2白有4種,2黑有3種,

故兩球顏色相同的概率為

   (Ⅲ)1紅有1×3+2×5=13(種),2紅有2種,

故至少有1個(gè)紅球的概率為

19.解:(I)側(cè)視圖   (高4,底2

       

   (Ⅱ)證明,由面ABC得AC,又由俯視圖知ABAC,,

面PAB

又AC面PAC,面PAC面PAB

   (Ⅲ)面ABC,為直線PC與底面ABC所成的角

中,PA=4,AC=,,

20.解:(I)由題意設(shè)C的方程為,得。

   

    設(shè)直線的方程為,由

    ②代入①化簡(jiǎn)整理得  

    因直線與拋物線C相交于不同的兩點(diǎn),

    故

    即,解得時(shí)僅交一點(diǎn),

   (Ⅱ)設(shè),由由(I)知

   

   

   

21.解:(I)   由

于是

切線方程為,即

   (Ⅱ)令,解得

    ①當(dāng)時(shí),即時(shí),在內(nèi),,于是在[1,4]內(nèi)為增函數(shù)。從而

    ②當(dāng),即,在內(nèi),,于是在[1,4]內(nèi)為減函數(shù),從而

    ③當(dāng)時(shí),內(nèi)遞減,在內(nèi)遞增,故在[1,4]上的最大值為的較大者。

    由,得,故當(dāng)時(shí),

    當(dāng)時(shí),

22.解:(I)設(shè)的首項(xiàng)為,公差為d,于是由

        解得       

       (Ⅱ)

        由  ①

        得     ②

        ①―②得   即

        當(dāng)時(shí),,當(dāng)時(shí),

       

        于是

        設(shè)存在正整數(shù),使對(duì)恒成立

        當(dāng)時(shí),,即

        當(dāng)時(shí),

       

        當(dāng)時(shí),當(dāng)時(shí),,當(dāng)時(shí),

        存在正整數(shù)或8,對(duì)于任意正整數(shù)都有成立。

www.ks5u.com

 

 


同步練習(xí)冊(cè)答案