由②知不成立.故從而對于.有.于是.故 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當x變化時,,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當時,取,有,故時不合題意.當時,令,即

,得

①當時,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當時,,對于,,故上單調(diào)遞增.因此當取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.

時,

                      

                      

在(2)中取,得 ,

從而

所以有

     

     

     

     

      

綜上,

 

查看答案和解析>>

對于命題“若a∈R,a-π是有理數(shù),則a是無理數(shù)”,有下列證法:

(1)假設(shè)a是有理數(shù),那么根據(jù)運算性質(zhì)知,a-π是無理數(shù),與已知a-π是有理數(shù)相矛盾,故假設(shè)不成立,原命題正確.

(2)假設(shè)a是有理數(shù),由a-π是有理數(shù)知,π是有理數(shù),這與π是無理數(shù)相矛盾,故假設(shè)不成立,原命題正確.

(3)假設(shè)a是有理數(shù),由a-π是有理數(shù)與π是無理數(shù)可知,a為無理數(shù),這與假設(shè)想矛盾,故假設(shè)不成立,從而原命題正確.

其中,證法正確的有

[  ]

A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

對命題“abc推出ac”,關(guān)于真假問題,甲、乙兩個學生的判斷如下:甲生判斷是真命題.理由是:由ab可知ab的方向相同或相反,由bc可知cb的方向相同或相反,從而有ac的方向相同或相反,故ac,即原命題為真命題;乙生判斷是假命題.理由是:當兩個非零向量a,c不平行,而b=0時,顯然abbc,但不能推出abc,故此時結(jié)論不成立,即原命題為假命題.究竟甲、乙兩生誰的判斷正確呢?請給以分析.

查看答案和解析>>

已知數(shù)列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設(shè) (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當時,由.  ……2分

若存在

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設(shè),

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數(shù)學歸納法)①當時, ,命題成立;

   ②假設(shè)時,命題成立,即,

   則當時,

    即

故當時,命題成立.

綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以,

從而.

也即

 

查看答案和解析>>


同步練習冊答案