所以不存在滿足條件的直線. 查看更多

 

題目列表(包括答案和解析)

對于定義在R上的函數(shù)f(x),可以證明點A(m,n)是f(x)圖象的一個對稱點的充要條件是f(m-x)+f(m+x)=2n,x∈R.
(1)求函數(shù)f(x)=x3+3x2圖象的一個對稱點;
(2)函數(shù)f(x)=ax3+(b-2)x2(a,b∈R)在R上是奇函數(shù),求a,b滿足的條件;并討論在區(qū)間[-1,1]上是否存在常數(shù)a,使得f(x)≥-x2+4x-2恒成立?
(3)試寫出函數(shù)y=f(x)的圖象關于直線X=M對稱的充要條件(不用證明);利用所學知識,研究函數(shù)f(x)=ax3+bx2(a,b∈R)圖象的對稱性.

查看答案和解析>>

對于定義在R上的函數(shù)f(x),可以證明點A(m,n)是f(x)圖象的一個對稱點的充要條件是f(m-x)+f(m+x)=2n,x∈R.
(1)求函數(shù)f(x)=x3+3x2圖象的一個對稱點;
(2)函數(shù)f(x)=ax3+(b-2)x2(a,b∈R)在R上是奇函數(shù),求a,b滿足的條件;并討論在區(qū)間[-1,1]上是否存在常數(shù)a,使得f(x)≥-x2+4x-2恒成立?
(3)試寫出函數(shù)y=f(x)的圖象關于直線X=M對稱的充要條件(不用證明);利用所學知識,研究函數(shù)f(x)=ax3+bx2(a,b∈R)圖象的對稱性.

查看答案和解析>>

對于定義在R上的函數(shù)f(x),可以證明點A(m,n)是f(x)圖象的一個對稱點的充要條件是f(m-x)+f(m+x)=2n,x∈R.
(1)求函數(shù)f(x)=x3+3x2圖象的一個對稱點;
(2)函數(shù)f(x)=ax3+(b-2)x2(a,b∈R)在R上是奇函數(shù),求a,b滿足的條件;并討論在區(qū)間[-1,1]上是否存在常數(shù)a,使得f(x)≥-x2+4x-2恒成立?
(3)試寫出函數(shù)y=f(x)的圖象關于直線X=M對稱的充要條件(不用證明);利用所學知識,研究函數(shù)f(x)=ax3+bx2(a,b∈R)圖象的對稱性.

查看答案和解析>>

對于定義在R上的函數(shù)f(x),可以證明點A(m,n)是f(x)圖象的一個對稱點的充要條件是f(m-x)+f(m+x)=2n,x∈R.
(1)求函數(shù)f(x)=x3+3x2圖象的一個對稱點;
(2)函數(shù)f(x)=ax3+(b-2)x2(a,b∈R)在R上是奇函數(shù),求a,b滿足的條件;并討論在區(qū)間[-1,1]上是否存在常數(shù)a,使得f(x)≥-x2+4x-2恒成立?
(3)試寫出函數(shù)y=f(x)的圖象關于直線X=M對稱的充要條件(不用證明);利用所學知識,研究函數(shù)f(x)=ax3+bx2(a,b∈R)圖象的對稱性.

查看答案和解析>>

對于定義在R上的函數(shù)f(x),可以證明點A(m,n)是f(x)圖象的一個對稱點的充要條件是f(m-x)+f(m+x)=2n,x∈R.
(1)求函數(shù)f(x)=x3+3x2圖象的一個對稱點;
(2)函數(shù)f(x)=ax3+(b-2)x2(a,b∈R)在R上是奇函數(shù),求a,b滿足的條件;并討論在區(qū)間[-1,1]上是否存在常數(shù)a,使得f(x)≥-x2+4x-2恒成立?
(3)試寫出函數(shù)y=f(x)的圖象關于直線X=M對稱的充要條件(不用證明);利用所學知識,研究函數(shù)f(x)=ax3+bx2(a,b∈R)圖象的對稱性.

查看答案和解析>>


同步練習冊答案